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ABSTRACT

The present technical report describes the architecture of the system
submitted to the DCASE 2020 Challenge - Task 3: Sound Event
Localization and Detection. The proposed method conforms a low
complexity solution for the task. It is based on four building blocks:
a spatial parametric analysis to find single-source spectrogram bins,
a particle tracker to estimate trajectories and temporal activities, a
spatial filter, and a gradient boosting machine single-class classifier.
Provisional results, computed from the development dataset, show
that the proposed method outperforms a CRNN baseline in three
out of the four evaluation metrics considered in the challenge, and
obtains an overall score almost ten points above the baseline.

Index Terms— SELD, ambisonics, tracking, event classifica-
tion, gradient boosting

1. SIGNAL MODEL

The input signals under consideration follow the convention used
by the TAU-NIGENS Spatial Sound Events 2020 - FOA dataset [1].
Each audio file has a duration of 60 seconds, and presents a First
Order Ambisonics (FOA) signal, following ACN and SN3D con-
ventions [2]. Each FOA clip contains the spatial representation of
a a reverberant sound scene, composed of an arbitrary number of
individual sound events plus background noise.

The individual sound events are taken from the NIGENS, which
features over a thousand instances belonging to 14 different sound
classes [3]. Events have been reverberated using real ambisonics
Room Impulse Responses (RIRs). Furthermore, the sound events
are distributed over the space, and can be either static or dynamic;
in the latter case, the movements are always circular around the
listener. Only a maximum of two events can be instantaneously
active.

We can use the following model to describe the audio scenes:

x(t) =

J∑
j=1

sκj (t− τj) ∗ h(t,Ωj) + ν(t), (1)

wherex(t) = [x0(t), x1(t), x2(t), x3(t)]ᵀ represent the FOA (with
M = 4 channels) recorded signal, composed of J different sound
events, sκj (t), j = 1, . . . , J , each one belonging to a different
class κ. Each event is convolved with an ambisonic room impulse
response h(t,Ω), which encodes the (potentially time-dependent)
position of the source Ω = (ϕ, θ) as the azimuth and elevation
angles in spherical coordinates, respectively. Furthermore, each

Figure 1: Architecture of the proposed methodology.

event is delayed an arbitrary amount of time τ , and has a duration
T . The temporal information can be summed up as the activation
Υ = (τ, τ + T ), which contains the onset and offset times of the
event. Finally, the term ν(t) models the background noise present
in the sound scene.

According to (1), given the observed reverberant FOA signal
x(t), the Sound Event Localization and Detection (SELD) prob-
lem consists in the estimation of the following parameters for each
sound event sκj (t): the instantaneous localization Ω, the activa-
tion times Υ and the class κ to which it belongs.

2. SYSTEM DESCRIPTION

The proposed method can be summed up in four steps:

1. Estimate single-source time-frequency bins from the input
signal.

2. Use a particle tracking system to convert then into event tra-
jectories and activation times.

3. Perform spatio-temporal filtering on the input signal with the
resulting estimations.

4. The spatially filtered signal is assigned a class label by a clas-
sifier.

A scheme of the method is shown in Figure 1. A full im-
plementation of the system can be found at https://github.
com/andresperezlopez/DCASE2020 with an open-source
license.
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2.1. Single-source estimation

The first step is the transformation of the input signal x(t) using
the Short-Time Fourier Transform (STFT) into the time-frequency
(TF) signalX(k, n), with k and n denoting the frequency and time
indices, respectively.

The frequencies of the resulting spectrogram above a given
limit fmax are discarded; this procedure helps to speed up the pro-
cess while maintaining most of the directional information, given
that the microphone geometry (with radius R = 0.042 m) provides
aliased spatial measurements above 5 kHz approximately [4].

Assuming that the sources have a sparse TF representation, it
could be possible to identify which TF bins contain a significant
energetic contribution from one only source, i.e., without significant
cross-talk from other sources or background noise. These TF bins
could be then used to compute accurate Direction of Arrival (DOA)
estimates.

We compute the single-source TF bins from the DirAC para-
metric analysis [5, 6] A variety of alternative methods are known,
mostly based on subspace analysis [7, 8]; however, those methods
require local estimation of eigenvalues, which is a computation-
ally complex procedure. This is the main reason for the choice of
DirAC-based analysis in this work.

A TF bin is considered to be single-source if its diffuseness
Ψ(k, n) is lower than a given threshold Ψmin. Diffuseness is com-
puted as [6]:

Ψ = 1− 2
‖〈<{X∗

0 [X1, X2, X3]}〉‖
〈|X0|2 + ‖[X1, X2, X3]‖2〉 , (2)

where the time and frequency indices have been dropped for
clarity, and 〈·〉 represents the temporal expectation operator, which
is usually implemented by averaging over NΨ neighbor frames.

Finally, we compute the DOA Ω(k, n) of the TF bins passing
the single-source test. DOA is computed as the angle of the active
intensity vector [6]:

Ω = ∠(<{X∗
0 [X1, X2, X3]}), (3)

where ∠ is the spherical angle operator. Figure 3 (top) shows
the estimated DOAs of the single-source TF bins, for an example
signal input.

2.2. Particle tracking

Once a set of reliable DOA estimates is obtained, the next step
is the generalization of the individual measurements into trajecto-
ries and temporal activations. In our case, we opted for the Rao-
Blackwellized Monte-Carlo data association (RBMCDA) algorithm
[9], which decomposes the problem in two: it solves first the data
association problem, and then performs the single target tracking
individually. This method has been recently used in the context
of sound event localization and tracking with successful results
[10, 11]; the code used here has been adapted from these authors1.

The system takes as the input the set of TF DOA values pass-
ing the single source test, and produces spatio-temporal particle
trajectories. More specifically, for each time frame of the DOA
masked spectrogram, the median2 of all frequency-dependent DOA

1https://github.com/sharathadavanne/
multiple-target-tracking

2Circular median in the case of azimuth.

Figure 2: Estimation of localization and temporal activation. Top:
azimuth spectrogram after diffuseness mask; color indicates esti-
mated position of a TF bin passing the single-source test. Bottom:
input/output of the particle tracking; the crosses represent the mea-
surement space, and the continuous lines are the resulting events.

estimates is computed. The resulting value will be added to the mea-
surement space of the tracker if the number of frequencies passing
the test exceeds a given minimum Kmin.

The performance of the RBMCDA algorithm is controlled by
several parameters. Some of the most relevant include the angular
velocity prior v, the standard deviation σν and the spectral density
sν of the measurement noise, the prior probabilities of birth pbirth
and noise percentage pν , and the number of Monte-Carlo particles
N . All parameters related to position are adjusted with respect to
their ranges, so that the azimuth magnitude is twice as big as the ele-
vation magnitude. A more detailed insight on the method is outside
the scope of the document.

The procedure is followed by a numerical post-processing step,
which includes data interpolation, resampling (if the processing was
performed using a frame size different than the target of 0.1 s) and
removal of elements shorter than Tmin. Finally, the system provides
a list of J events, each one having an instantaneous position Ωj and
a temporal activation Υ)j, as required for the challenge task. An
example of the system inputs and outputs is depicted in Figure 3
(bottom).

2.3. Signal filter

The spatial estimates for each event, Ωj , provided by the particle
tracking system can be used to spatially filter the audio. This pro-
cess is performed by steering a virtual first-order cardioid in the
direction of interest, by means of a linear combination of the input
channels:

s̃j(t) =

M−1∑
m=0

xm(t)Ym(Ωj)αm (4)

where Y (Ωj) = [Y0(Ωj), . . . , YM−1(Ωj)]
ᵀ are the real-

valued spherical harmonics up to first order evaluated in the direc-
tion Ωj [12], and the column vector α controls the beam pattern
directivity. The result of this process is a monophonic estimate for
each event, s̃j(t), which is temporally delimited by Υj . As a last
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Figure 3: Gradient boosting machine learning process. Adding
weak estimators allows reducing overall error in the predictions.

step, each estimate is amplitude peak-normalized, in order to mini-
mize potential amplitude variability due to arbitrary configurations
of the sound scene.

2.4. Event classification

As a final step, a class label is assigned to each estimated event
s̃j(t) using a single-class classifier. Since the objective is to keep
complexity low and make results interpretable, a machine learning
algorithm is used instead of deep learning frameworks. The main
advantages of this choice are:

• Low number of parameters.
• Low train and predict computational time, allowing easy repli-

cation of the results.
• Relative importance of the features in the output can be inter-

preted which is not possible with deep learning approaches.

Gradient boosting machine (GBM) has been selected as the clas-
sification algorithm since it is a powerful yet simple technique for
predictive modelling. In essence, the algorithm is aimed to mini-
mize the loss of the objective function by adding many weak learn-
ers. These learners are typically simple decision trees and their pa-
rameters are tuned using gradient descent techniques. Specifically,
XGBoost framework is implemented for training process due to its
proven performance in a wide range of classification problems [13].

Sound features are obtained using extractors from Essentia, an
open-source library for audio analysis [14]. Given the heteroge-
neous nature of the sound classes included in the dataset, a mixture
of spectral, temporal and harmonic feature extractors have been se-
lected, as shown in Table 1.

3. EXPERIMENTS

3.1. Dataset and baseline system

The baseline method is based on the recently proposed SELDnet
architecture [10], which features a Convolutional Recurrent Neu-
ral Network (CRNN) that solves both localization and classification
problems jointly. Additionally, the SELDnet implementation for the
challenge has been improved with several changes inspired by one
of the best performing methods in last year’s challenge [15].

code from libraries

Table 1: Acoustic features used for classification, grouped by type.

Type Features Number

Low level Melbands 24
MFCC 13

Spectral Features 25
Pitch Salience 1

SFX Total and perceived 2
sound duration

Descriptors based on pitch 4
and harmonics estimation

Sound envelope descriptors 11
Pitch envelope descriptors 4

3.2. Experimental setup

In order to explore the performance of the system, two different ap-
proaches have been undertaken regarding the creation of the train-
ing dataset for the monophonic single-class classifier. The first
approach, referred to as PAPAFIL1, collects all event localization,
temporal activation and class information by parsing the annotation
files, and uses this oracle information to spatially filter the signal
and label the monophonic estimates with which to train the classi-
fier. Conversely, the second approach, called PAPAFIL2, uses the
proposed parametric particle filter to estimate localizations and ac-
tivations, and the class label is assigned to each event by a custom
association algorithm based on spatio-temporal similarity. As in the
previous case, the input signal is finally filtered to obtain the mono-
phonic event estimates.

Therefore, there is a noticeable difference on the monophonic
event datasets. While training events in PAPAFIL1 are more ac-
curately localized and detected than in PAPAFIL2, the differences
with respect to the evaluation situation are much bigger in the for-
mer case. Consequently, a slightly better performance of the second
method might be expected, provided that the parametric particle fil-
ter performance has some degree of robustness and accuracy.

The perfect localization and temporal activity information in
the PAPAFIL1 training set suggests a need for data augmentation
techniques. In contrast, the training material used in PAPAFIL2 is
already provided of a certain extent of variability. This situation
motivates the implementation of data augmentation methods only in
the PAPAFIL1 training set. Specifically, several standard data aug-
mentation techniques are implemented: pitch shifting, time shift-
ing, time stretching and white noise addition. Furthermore, given
the high observed influence of the reverberation in the system per-
formance, a for reverberant data augmentation based on synthetic
RIRs has been considered. This approach has recently been shown
very effective for the blind reverberation time estimation [16] but,
to the best of the authors’ knowlegdge, this is the first application
to the SELD problem. Regarding the specific implementation, ten
different single-channel RIRs, with reverberation times in the range
of 0.3 to 1.1 seconds, have been synthetically created by the Im-
age Source method [17]. During training, each event estimate is
convolved with one of the RIRs, randomly chosen.

The presented scheme leads to two different oracle systems
(named by an -O appendix in the method name), which represent
the best performance theoretically achievable for the correspond-
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Table 2: (Hyper-)parameter values.

Step Parameter Value Unit

Single-Source sample rate 24 kHz
Estimation window type hann

window size 2400 samples
window overlap 50 %

fmax 6 kHz
NΨ 2 frames

Ψmin 0.1

Particle v 2 ◦/frame
Filtering σν 5

sν 20
pbirth 0.25
pν 0.25
N 100 / 30

Kmin 10 bins/frame
Tmin 10 frames

Signal α0 0.775
Filter α1 3 * 0.4

α2 3 * 0.4
α3 3 * 0.4

Event number of estimators 1300 trees
Classification loss mlogloss

learningrate 0.05
maxdepth 4

minsamplesleaf 10 samples

ing method. In this way, it is expected that PAPAFIL1-O obtains
very high localization scores overall, while the performance of
PAPAFIL2-O can be much similar to the non-oracle case.

It is important to notice that the spatial filtering is performed
with a first-order cardioid, which provides a broad directive pattern.
Accordingly, in the case of overlapping events, there will be always
signal cross-talk, even when using the groundtruth annotations. The
usage of higher ambisonic orders could easily mitigate this effect.

Table 2 shows a comprehensive list of the parameters used
throughout the different steps of the proposed method. All values
are the same for both presented approaches, except for the number
of Monte-Carlo particles N . The values for Single-Source Estima-
tion and Particle Filtering parameters have been iteratively refined
by manual tuning and inspection, starting from standard values. The
beamforming weights αm correspond to the maximum directivity
beamformer, which minimizes the energy contributions from direc-
tions other than the lookup direction [18]. In the spatial audio field,
such property is also known as the max-rE decoder [12]. Regard-
ing Event Classification, a cross-validation scheme has been imple-
mented for tuning GBM hyperparameters.

3.3. Evaluation metrics

The system is evaluated according to the joint metrics presented in
[19]. The metrics evaluate jointly the localization and the classifica-
tion, and are divided into two types: location-aware classification,
and classification-aware localization. There are two classification

metrics: Error Rate (ER20) and F-Score (F20). As the name sug-
gests, the metrics are conditioned to a minimum localization per-
formance, which is set to 20◦. Localization metrics are also two-
fold: Localization Error (LECD) and Localization Recall (LRCD).
Again, the subscript CD stands for class-dependent; thereby a cor-
rect localization evaluation is conditioned to a correct classification.

4. RESULTS

Table 3 summarizes the results of the experiments, according to two
different evaluation setups. The top sub-table present the results us-
ing the following data split: training with folds 3 to 6, validation
with fold 2 and testing with fold 1. This structure has been pro-
moted by the Challenge organization as a fair way of comparing
methods; furthermore, it is expected to provide similar results to the
evaluation set, given that part of the data remains unseen at training.
Conversely, the lower half of the table gives the results for the entire
development dataset.

The table reports the results for three different systems. The
baseline method has results reported only for the comparison split,
while the proposed methods PAPAFIL1 and PAPAFIL2 and their re-
spective oracle results PAPAFIL1-O and PAPAFIL2-O are reported
for both sets.

Regarding the comparison split, the proposed methods outper-
form the baseline system in three out of the four evaluation met-
rics: ER20, F20 and LECD . While the results obtained by both
of them are close, PAPAFIL2 obtains better classification scores
(ER20 and F20), and PAPAFIL1 obtains subtly better localization
error (LECD). However, the localization recall results (LRCD) are
slightly worst than the baseline. This fact does not prevent the pro-
posed methods to have an overall score (SELD) better than the base-
line: 0.41 (1) and 0.38 (2), agains 0.47.

With respect to the results evaluated on the full dataset, compar-
ison with the baseline is not possible due to lack of results. How-
ever, when comparing the proposed approaches, PAPAFIL2 outper-
forms in all evaluation metrics, scoring over ten points better in
all metrics (including SELD) excepting textLECD , where the im-
provement is more moderate.

The results obtained by the oracle methods are within the ex-
pected ranges. PAPAFIL1-O performs almost perfectly on the en-
tire dataset, and decreases its classification scores for the unseen
split set; localization remains highly accurate, but the classifica-
tion errors influence the textLECD result. The performance of
PAPAFIL2-O does not vary significantly when comparing evalua-
tion sets, since it does not depend on training, and the differences
are solely due to differing acoustic properties. On the other hand,
the difference with respect to the non-oracle version is noticeably
low in the case of the unseen split, with a result only slightly better:
0.24 (PAPAFIL2-O) vs 0.26 (PAPAFIL2).

Although the localization performance is good in general terms
with both PAPAFIL approaches, the results deteriorate noticeably
with overlapping sound, as the comparatively low score for the Lo-
calization Recall LRCD reflects. A closer inspection reveals that, in
many occasions, the TF bins passing the single-source test mostly
belong to one out of two simultaneous sources. It is a known issue
that DirAC diffuseness performance is reduced when two sources
are present [7]. However, related problems have been observed in
[11], where an instantaneous source number estimator is used to-
gether with the particle filter. In a similar manner as reported in that
work, the results here suggest the need need for more sophisticated
source detection and counting methods.
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Table 3: Evaluation results on the development set. Top: results
from the recommended comparison split. Bottom: overall results

Method ER20 F20 LECD LRCD SELD

BASELINE 0.72 37.4 % 22.8◦ 60.7 % 0.47
PAPAFIL1 0.60 49.8 % 13.4◦ 54.4 % 0.41

PAPAFIL1-O 0.37 67.0 % 2.0◦ 68.6 % 0.26
PAPAFIL2 0.57 54.0 % 13.8◦ 59.7 % 0.38

PAPAFIL2-O 0.32 79.6 % 8.5◦ 82.4% 0.19

PAPAFIL1 0.57 55.6 % 15.6◦ 66.7 % 0.36
PAPAFIL1-O 0.08 93.7 % 0.2◦ 94.0 % 0.05

PAPAFIL2 0.44 68.0 % 13.3◦ 79.6 % 0.26
PAPAFIL2-O 0.41 71.1 % 12.3◦ 82.0% 0.24

5. CONCLUSION

We have presented a novel method for Sound Event Localization
and Detection (SELD), based on parametric particle filtering and
gradient boosting single-class event classification of audio features.
Results show that the proposed method outperforms the baseline
method, a state-of-the-art Convolutional Recurrent Neural Network
(CRNN). Specifically, the proposed method is able to improve the
baseline SELD score by almost ten points, and to improve also in
three out of the four proposed evaluation metrics, by means of a low
complexity machine learning architecture.
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