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ABSTRACT

This technical report describes our submission to the DCASE 2020
Task 3 (Sound Event Localization and Detection (SELD)). In the
submission, we propose a multitask regression model, in which
both (multi-label) event detection and localization are formulated
as regression problems to use the mean squared error loss homoge-
neously for model training. The deep learning model features a re-
current convolutional neural network (CRNN) architecture coupled
with self-attention mechanism. Experiments on the development set
of the challenge’s SELD task demonstrate that the proposed system
outperforms the DCASE 2020 SELD baseline across all the detec-
tion and localization metrics, reducing the overall SELD error (the
combined metric) approximately 10% absolute.

Index Terms— audio event detection, localization, regression,
self-attention

1. INTRODUCTION

Extended from active research on sound (audio) event detection,
sound event localization and detection (SELD) task [1, 2] entangles
the what and where questions about occurring sound events. That
is, it aims to determine the identities of the events and their spa-
tial locations/trajectories simultaneously. Solving the SELD task
would enable a wide range of novel applications in surveillance,
human-machine interaction, bioacoustics, and healthcare monitor-
ing, to mention a few.

The joint SELD task can be divided and conquered individu-
ally by two separate models, one for sound event detection (SED)
[3, 4, 5] and the other for sound source localization (SSL) [6, 7].
Two-stage approach presented in [8] can be also considered to be-
long to this line of work. Dealing with the joint task in a single
model has been known to be more challenging. Three main ap-
proaches have been proposed, including sound-type masked SSL
[6], spatially mask SED [9], and joint SELD modeling [10, 2].
Joint sound event detection and localization modeling with multi-
task deep learning has been most commonly adopted in the latest
DCASE challenge [11, 12, 13, 2], demonstrating encouraging re-
sults.

Typically, in the joint modeling approach with a multitask deep
learning model, the binary cross-entropy loss is typically used for

event detection (via classification) to handle possible multi-label
due to occurrences of multiple events while the mean squared error
(MSE) loss is often employed for direction of arrival (DOA) estima-
tion (via regression). These two losses are usually associated with
different weights and then combined to make the total loss for net-
work training. However, there exist no established rules to set the
weights for the losses; more often than not, they are set with some
trivial weights without clear justification. For example, while the
DCASE 2019 baseline weighted the MSE loss 50 larger than that
of the binary cross-entropy loss, the current DCASE 2020 baseline
even enlarges this multiplication to 1000 times. Furthermore, the
two different types of loss functions might be progressing at dif-
ferent rates during the training and might not converge at the same
time, making the fix weights suboptimal.

In order to avoid such an issue, we propose to formulate both
the SED and SSL subtasks as regression problems and homoge-
neously use the MSE loss for both of them. The proposed network
features a recurrent convolutional neural network (CRNN) architec-
ture coupled with self-attention mechanism [14]. Experiments on
the development set of the DCASE 2020 Task 3 show that our pro-
posed network outperforms the DCASE 2020 SELD baseline across
all the evaluation metrics, some with a large margin. Using the first-
order Ambisonics (FOA) data, we achieve 19.0◦, 65.6%, 0.60, and
49% on the localization error (LECD), localization frame recall
(LRCD), detection error (ER20◦ ) and detection F1-score (F20◦ ),
respectively. The corresponding results obtained by using the tetra-
hedral capsule arrangement (MIC) data are 18.2◦, 64.1, 0.59, and
0.38. In comparison with the DCASE 2020 SELD baseline [1], we
achieve the combined SELD error rates of 0.39 and 0.38 using the
FOA and MIC data, respectively, reducing 0.08 and 0.11 absolute
from that of the baseline.

2. THE PROPOSED NETWORK

The proposed network is illustrated in Figure 1. The network re-
ceives time-frequency input S ∈ RT×F×C of T frames, F fre-
quency bins, and C channels. The convolutional part of the net-
work consists of six convolutional layers each of which is followed
by a max pooling layer except the first one. Since we assume
that the early convolutional layers are crucial for feature learning,
the network is designed to have the first two convolutional layers
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Figure 1: Overview of the proposed multitask regression self-
attention CRNN.

back-to-back. In order, the six convolutional layers accommodate
{64, 64, 128, 128, 256, 256} filters, respectively, with a common
kernel size of 3 × 3 and the stride of 1 × 1. The gradually larger
numbers of filters in the later convolutional layers are to compensate
for their smaller feature maps in the frequency dimension. Zero-
padding (i.e. SAME padding) is used in order to reserve the tem-
poral size. After convolution, batch normalization [15] is applied
on the feature maps, followed by Rectified Linear Units (ReLU)
activation [16].

The max pooling layers, except the first one, have a common
kernel size of 1× 2 to reduce the input size by half in the frequency
dimension and, by doing so, gain frequency invariance in the in-
duced feature maps while keeping the temporal size unchanged.
Particularly, the pooling kernel size of the first max pooling layer
(max pool 2, cf. Figure 1) is set to 5 × 2 in order to reduce the
time dimension to T

5
to match the frame resolution (100 ms) for

computing the evaluation metrics.

Passing through the convolutional block, the input is trans-
formed into a feature map of size T

5
× 2 × 256 which is re-

shaped to form a sequence of feature vectors (x1,x2, . . . ,xT
5
)

where xi ∈ R512, 1 ≤ i ≤ T
5

. A bidirectional recurrent neural
network (biRNN) is then employed to iterate through the sequence
and encode it into a sequence of output vectors (z1, z2, . . . , zT

5
).

The biRNN is realized by Gated Recurrent Unit (GRU) cells with
the hidden size of 256. To further improve encoding the context
around a feature zi, self-attention mechanism [14] is used. View-
ing the vectors (z1, z2, . . . , zT

5
) as a set of key-value pair (K,V).

In the context of this work, both the keys and values coincide to
Z (the concatetation of the z vectors). We adopt the scaled dot-
product attention as in [14], i.e. the attention output at a time index
is a weighted sum of (z1, z2, . . . , zT

5
) where the weights are deter-

mined as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V. (1)

Here, Q is the query [14] and also coincides to Z in the context of
this work, i.e. Q ≡ K ≡ V ≡ Z. dk is the extra dimension into
which Q, K are transformed before the dot product to prevent the
inner product from becoming too large. dk is set to 64 in this work.

At each time index, the SED and SSL subtasks are accom-
plished via two network branches each consists of two fully con-
nected layers with 512 units each. The first branch’s output layer
has C units with sigmoid activation to perform event activity re-
gression of C classes. The second branch has 3C units with tanh
activation to regress for the DOA trajectory of the C event classes.
The network is trained to minimize the total MSE loss of the two
network branches without weighting, which is averaged by the se-
quence length T

5
.

3. EXPERIMENTS ON DCASE 2020 SELD
DEVELOPMENT SET

3.1. DCASE 2020 SELD development set

Data of the DCASE 2020 SELD task is synthesized in two spatial
sound formats: (1) MIC - 4-channel microphone array extracted
from a subset of 32-channel Eigenmike format and (2) FOA - 4-
channel first-order Ambisonics extracted from a matrix of 4 × 32
conversion filters. More information about the data synthesis can be
found in [1]. The development set of the DCASE 2020 SELD task
consists of six sets of 1-minute recordings. Following the Task’s
setup, the first set was used as the unseen data for testing purpose,
the second set was used as the validation set for model selection,
and the remaining four sets were used as the training data.

3.2. Feature extraction

Following the procedure of the DCASE 2020 SELD baseline, we
extracted log-Mel magnitude spectrogram with a window size of 40
ms, 20 ms overlap, and 64 Mel-bands. To encode the phase infor-
mation, for the FOA data, an acoustic intensity vector was extracted
for each Mel-band, whereas, for the MIC data, generalized-cross-
correlation with phase-transform (GCC-PHAT) features were com-
puted for each Mel-band. Overall, multi-channel images of size
3000 × 64 × 7 and 3000 × 64 × 10 were resulted for one-minute
FOA and MIC recordings, respectively.

3.3. Parameters

The proposed network was implemented using Tensorflow frame-
work. We used spectrogram segments of size T = 600 (equivalent
to 2 seconds) as inputs. Dropout rates of 0.5, 0.1, and 0.25 were
employed to regularize the convolutional layers, the biRNN, and the
fully-connected layers, respectively.

The network was trained using Adam optimizer [17] for 10000
epochs with a minibatch size of 64. Each spectrogram segment in a
minibatch was randomly sampled from the 1-minute recording and
augmented using spectrogram augmentation [18]. The learning rate
was initially set to 2× 10−4 and was exponentially reduced with a
rate of 0.8 after 200, 600, and 1000 epochs. In addition, the first
10 epochs were used as a warmup period in which the network was
trained with a small learning rate of 2× 10−5.
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Table 1: Results obtained by the proposed system and the DCASE 2020 baseline on the development and evaluation sets.

FOA MIC
LECD LRCD ER20◦ F20◦ SELD LECD LRCD ER20◦ F20◦ SELD

Development results
Val (Baseline) 23.5◦ 62.0 0.72 37.7 0.46 27.0◦ 62.6 0.74 34.2 0.48
Test (Baseline) 22.8◦ 60.7 0.72 37.4 0.47 27.3◦ 59.0 0.78 31.4 0.51
Val 17.7◦ 68.1 0.58 52.4 0.37 17.3◦ 66.0 0.56 53.9 0.37
Test 19.0◦ 65.6 0.60 49.2 0.39 18.2◦ 64.1 0.59 50.8 0.38
Evaluation results
System 1 16.8◦ 69.8 0.52 57.8 0.33 − − − − −
System 2 − − − − − 14.6◦ 68.2 0.55 58.8 0.34
System 3 15.2◦ 72.4 0.49 61.7 0.31 − − − − −
System 4 − − − − − 14.6◦ 68.2 0.53 59.2 0.33

During training, the network snapshot that achieved the low-
est combined SELD error rate on the validation set was retained
for evaluation. The retained network was then exercised on the test
recordings with a 2-second segment at a time without overlap. To
determine event activity from the corresponding regression output,
a threshold of 0.5 was applied. No further post-processing was car-
ried out.

3.4. Evaluation metrics

For sound event detection, the DCASE 2020 evaluates the perfor-
mance of the SEL subtask using localization-aware detection error
rate (ER20◦ ) and F-score (F20◦ ) with a threshold of 20◦ in one-
second non-overlapping segments. For sound event localization,
errors only between same-class predictions and references are con-
sidered. The class-aware localization error (LECD) and its corre-
sponding recall (LRCD) are employed for evaluating localization
outputs and are also computed in one-second non-overlapping seg-
ments. In addition, we also computed the combined SELD error
metric:

SELD = ER20◦ + (1− F20◦) +
LECD

180
+ (1− LRCD) (2)

to give an overall picture about a system.

3.5. Experimental results

The results obtained by the proposed system on the development
set are shown in Table 1. In comparison to the DCASE 2020 SELD
baseline the proposed system achieves better results across the eval-
uations metrics, some with a large margin. On the FOA data, the
proposed system obtains 19.0◦, 65.6%, 0.60, and 49% on the lo-
calization error (LECD), localization frame recall (LRCD), detec-
tion error (ER20◦ ) and detection F1-score (F20◦ ), respectively. The
corresponding results obtained using the MIC data are 18.2◦, 64.1,
0.59, and 0.38. Overall, the proposed system reduces the combined
SELD error by 0.08 and 0.11 absolute from that of the baseline.

4. DCASE 2020 SUBMISSION

In a similar procedure, we built four systems for DCASE 2020
SELD task submission.

• System 1: The network was trained using five recording sets
(2-6) from the FOA data of the development set while the first
recording set was used as the validation set.

• System 2: Similar to System 1 but the MIC data was used.

• System 3: All six recording sets (i.e. without validation data
for model selection) from the FOA data of development were
used for training.

• System 4: Similar to System 3 but the MIC data was used.

5. CONCLUSIONS

In this technical report, we presented the proposed system upon
which four submission systems were built for the DCASE 2020
SELD task. We approach joint modeling for sound event detection
and localization as a multitask regression problem so that the MSE
loss can be used homogeneously for both the two subtasks. The pro-
posed network features a CRNN architecture, which is popular for
sound event detection, and self-attention mechanism. Experimen-
tal results on the development set of the the DCASE 2020 SELD
task show significant improvements over the baseline across all the
evaluation metrics.
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