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ABSTRACT

A deep network with depth-wise separable convolutions [1] and
skip connections is introduced for low complexity acoustic scenes
classification. The proposed network is not only more than 15 times
smaller than the baseline convolution neural network [2] but also
outperforms the baseline by two percents on average.

Index Terms— Low Complexity Network, Acoustic Scene
Classification, depth-wise Separable Convolutions

1. INTRODUCTION

Acoustic scene classification tries to classify recordings in environ-
ments into a set of predefined classes. Deep neural networks has
become a standard techniques for this task [3]. However, num-
ber of parameters required in the state-of-the-art network models is
usually more than few millions [3]. Hence, these solutions is very
challenging to deploy on mobile phones or low-power-consumption
devices. As a consequence, a low complexity solution for acoustic
scene classification is of great interest.

Deep networks have been applied successfully in vision, and
the low complexity solutions have been an active top of research.
Recently Mobilenets [4, 5] are deep learning networks that can re-
duce the number of parameters required while maintaining reason-
able performance. Key features of these networks include separable
convolutions, depth-wise separable convolutions, and linear bottle-
necks [5]. Motivated by Mobilenets, we introduce a network archi-
tecture that is 15 times smaller than the baseline system of DCASE
2020 task 1 subtask B while improving the performance approxi-
mately by two percents. Our network applied the key insights from
Mobilenetv2 [5]. The rest of this report is organized as follows:
First, description of the development data set is provided before in-
troducing our proposed model. Next, performance of the proposed
method against the baseline is shown, followed by conclusion.

2. DATA SET AND PREPROCESSING STEP

The DCASE 2020 Task 1 subtask B dataset contains recordings of
10 different acoustic scenes from 12 European cities [2]. The acous-
tic scenes are grouped into three classes: indoor, outdoor, and trans-
portation. All recordings are binaural, 48kHz 24-bit format, and
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from a single recording device. The development data set has 40
hours of recording from 10 different cities. 70 percents of the de-
velopment data set is used for training, while 30 percent is withhold
as a test set. Recordings from the same location can only in the
training set or test set but not both.

In prepossessing steps, first channel of a recording is converted
to log mel-band energies spectrogram with 40 mel bands. The num-
ber of samples in a analysis frame is 2048 (40 ms) with 50% hop
interval. The data set is normalized frequency-wise across time.
The mean and standard deviation are estimated from the training
set.

3. MODEL AND TRAINING

The log mel-band energies spectrogram feature, X ∈ RF×T , is
given as the input to the proposed network, where F is 40 mel bands
and T is 498 analysis frames (10 s audio recording). The proposed
network structure is presented in Table 1. Layer names are Keras
definitions [6]. Note that after each batch normalization (BN) layer,
a rectifired linear unit is attached. The configurations of each the
layer are provided in Table 2. Using the model size calculation
provided by the task, our model has 6979 parameters in total with
the size of 27916 bytes or nearly 27.26 KB, while number of non-
zero parameters is 6944 with the size of 27776 bytes or nearly 27.13
KB.

The network was trained for 200 epochs with a batch size of
64. ADAM optimizer [7] was used with a learning rate of 0.0001
and a dropout rate of 0.05. The training model that has smallest
classification error over the validation set is selected. We submit
two outputs this model and another two outputs from the extension
of this model where the number of filters in convolution layers were
doubled and a dropout rate is set to 0.2. The next section present the
performance of the proposed method on the development dataset.

4. PERFORMANCE ON DEVELOPMENT DATA SET

There are two metrics for the task performance: accuracy and multi-
class cross-entropy. Accuracy will be calculated as macro-average
(average of the class-wise accuracy for the acoustic scene classes).
Multi-class cross-entropy (log loss) is used as a metric which is
independent of the operating point [2].The proposed system was
trained and tested 10 times; the mean and standard deviation of the
performance from these 10 independent trials are shown in the re-
sults table3. The baseline model and subtask A baseline system and
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Layer Connected to
Input
Conv2D1 Input
DepthwiseConv2D1 Conv2D1

Concatenate1 DepthwiseConv2D1

Input
BatchNormalization1 Concatenate1
AveragePooling2D1 BatchNormalization1

Conv2D2 AveragePooling2D1

BatchNormalization2 Conv2D2

Dropout1 BatchNormalization2

DepthwiseConv2D2 Dropout1
DepthwiseConv2D3 DepthwiseConv2D2

Concatenate2 DepthwiseConv2D2

DepthwiseConv2D3

BatchNormalization3 Concatenate2
Conv2D3 BatchNormalization3

BatchNormalization4 Conv2D3

GlobalMaxPooling2D1 BatchNormalization4

Dropout2 GlobalMaxPooling2D1

Dense1 Dropout2
Output Dense1

Table 1: Network connection of the proposed model. Layer names
are Keras layer definitions

Layer Configuration
Conv2D1 filters=32, kernel size=(4, 1)
DepthwiseConv2D1 kernel size=(1, 5)
Conv2D2 filters=32, kernel size=(1, 1)
DepthwiseConv2D2 kernel size=(5,1)
DepthwiseConv2D3 kernel size=(1, 5)
Conv2D3 filters=32, kernel size=(1, 1)
Dense1 units=3

Table 2: Configurations of layers if necessary.

System Accuracy Log loss Audio Embedding Total Size
DCASE2020 Task 1 Baseline, Subtask A 89.8 ± 0.3 % 0.266 ± 0.3 17.87 MB 19.12 MB
Modified DCASE2020 Task 1 Baseline, Sub-
task A

88.9 % ± 0.3 % 0.298 ± 0.003 840.6 KB 985.8 KB

DCASE2020 Task 1 Baseline, Subtask B 87.3 ± 0.7 0.437 ± 0.045 0 B 450 KB
The Proposed network, Subtask B 89.5±0.2 0.287 ± 0.006 0 B 27.26 KB

Table 3: Result of the proposed network in comparison with the
systems provided by Dcase2020 task 1.

a minified version of it are included for comparision [2]. Clearly,
our proposed network outperforms the baseline system even though
it is much smaller in size. Our network is very close to the per-
formance of the subtask A baseline which used a huge pre-trained
OpenL3[8] network to calculate audio embedding.

5. CONCLUSION

From the performance of the proposed small network, we can con-
clude that deep neural network for acoustic scene classification can
leverage depth-wise separable layer convolutions and bottleneck
layers from vision in order to improve performance while keeping
small model size.
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