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ABSTRACT

A multiple layer neural network predictor is proposed for anoma-
lous sound detection instead of a traditional auto-encoder approach.
The network operates on the log-mel-spectrogram, predicting the
log-mel feature vector given the previous and future feature vectors.
The prediction error is used as the anomaly score measure. The pro-
posed system outperforms the baseline system [1] on Detection and
Classification of Acoustic Scenes and Events 2020 (DCASE2020)
Task 2 development data set [2, 3].

Index Terms— Predictor Network, anomaly detection, unsu-
pervised learning, machinery monitoring

1. INTRODUCTION

Anomalous sound detection (ASD) tries to identify abnormal sound
emitted from a target machine. The main challenge of the task is
that anomalies are unknown because only normal sound samples are
given for training. Particularly, DCASE 2020 Task 2 provides data
from ToyADMOS [2] and MIMII Dataset [3] including normal and
anomalous sound clips of six types of toy and real machines. Only
normal sound instances are available for training.

In the age of deep learning, autoencoder (AE) is a standard
technique for ASD. In an AE-based anomaly detection system, the
anomaly score is the reconstruction error of the observed sound.
During the training phase, only normal sound clips are presented,
and the goal of AE is minimizing the reconstruction error over the
training set. Hence, AE assumes that it cannot reconstruct anoma-
lies as well as normal singals. However, if target sounds are im-
mersed in background noises, AE could try to minimize the back-
ground in the training set. As a consequence, it may produce a very
noisy anomaly score in the prediction phase.

Machines are engineer-designed for consistency. In a normal
operating mode, they should produce predictable sound patterns.
Based on these assumptions, we proposed a predictor network in
which the network tries to predict log mel-band energy feature vec-
tors at a given time from nearby past and future feature vectors. The
predictor error will be treated as an anomaly score; the normal in-
stances are expected to be more predictable with smaller anomaly
scores. In this report, we studied a simple predictor network on the
development data set. The rest of this report is organized as follows:
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First, we briefly describe the development data set before introduc-
ing our proposed model. Next, the performance of the proposed
method against the baseline autoencoder system is shown,followed
by conclusion.

2. DATA SET AND PREPROCESSING STEP

Each recording in the dataset is a single-channel 10-sec long au-
dio file of the target operating machine’s sound and environmental
noise. There are six types of machines: toy car, toy conveyor, valve,
pump, fan and slide rail; the first two are from ToyADMOS while
the rest are from MIMII Dataset. The sampling rate of test and
training samples is 16 kHz. Each machine type has three or four
machine IDs in the development data set. Each machine ID com-
prises approximately 1000 samples of normal instances for training
and 100-200 samples each of normal and anomalous recordings for
test.

In the data preprocessing step, we convert raw audio recordings
into log mel-band energy feature vectors with 64 bands; a 1024-bin
fast Fourier transform (FFT) with hop size of 512 is used. Each
audio recording is converted to a 64 × 313 frequency-time matrix.
The matrix is then split into overlapped windows of size 128× 7 as
inputs into the proposed predictor network.

3. MODEL AND TRAINING

In the proposed network, each recording is transformed into a log-
mel-spectrogram X ∈ RF×T where F is the number of mel filters
and T is the number of time frames. Given the frames at time t, and
P frames before and after time t, the anomaly score for a given clip
is defined to be

Aθ =
1

T − 2P

T−P−1∑
P+1

||Xt − f(φt)||22 (1)

where φt = (Xt−P , . . . , Xt−1, Xt+1, . . . , Xt+P ), fθ(·) is the
predictor network, and θ is the hyper-parameter set of the system.

The proposed predictor network has one fully-connected net-
work (FCN) layer with 256 units as the input layer followed by
three hidden FCN layers and one FCN output layer. Each hidden
layer contains 256 units, and the output dimension is 64. Batch nor-
malization [4] followed by Rectified linear unit (ReLU) and dropout
[5] is used after FCN except for the output layer. The network was
trained for 70 epochs with a batch size of 512. The ADAM op-
timizer [6] was used with a learning rate of 0.0001. The training
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model that has the smallest prediction error over the validation set
is selected. Our validation set is 10 percent of the training set. Note
that each machine ID has its own set of trained weights, and the
dropout rate is set at 0.2. The performance of the proposed model is
presented in the next section.We submit outputs from independent
training to DCASE 2020 Task 2.

4. PERFORMANCE ON DEVELOPMENT DATA SET

The area under the receiver operating characteristic (ROC) curve
(AUC) [1] and the partial-AUC (pAUC) [1] are performance met-
rics for this tasks. For comparison, we train our proposed system 10
times independently and report the averages and standard deviations
of the measurements. The performances of the baseline system and
the proposed predictor network are given in Tables 1 and 2 respec-
tively. Overall, our system outperforms the baseline in all machine
types except toy car.

5. CONCLUSION

The proposed predictor network is a very simple multi-layer FCN
network, it actually mimics the encoder part of the baseline sys-
tem. However, the network shows significant performance improve-
ment from the baseline. Among machine types, valve and fan have
very high jumps in performance above the baseline with increases
of 23.22% and 8.5% on AUC metric, respectively. The results of
the proposed network suggests that predictor network potentially
becomes a powerful tool for machinery sound anomaly detection.
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Toy Car
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

1 81.36 ± 1.15 68.40 ± 0.92
2 85.97 ± 0.58 77.72 ± 0.90
3 63.30 ± 1.03 55.21 ± 0.37
4 84.45 ± 1.87 68.97 ± 2.37
Average 78.77 ± 1.03 67.58 ± 1.04

Toy Conveyor
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

1 78.07 ± 0.79 64.25 ± 0.99
2 64.16 ± 0.53 56.01 ± 0.71
3 75.35 ± 1.39 61.03 1 ± 1.00
Average 72.53 ± 0.67 60.43 ± 0.74

Fan Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

0 54.41 ± 0.47 49.37 ± 0.10
2 73.40 ± 0.58 54.81 ± 0.34
4 61.61 ± 1.08 53.26 1 ± 0.40
6 73.92 ± 0.54 52.35 1 ± 0.51
Average 65.83 ± 0.53 52.45 ± 0.21

Pump Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

0 67.15 ± 0.87 56.74 ± 0.82
2 61.53 ± 0.97 58.10 ± 0.93
4 88.33 ± 0.66 67.10 1 ± 1.09
6 74.55 ± 1.24 58.02 1 ± 1.21
Average 72.89 ± 0.70 59.99 ± 0.77

Slider Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

0 96.19 ± 0.43 81.44 ± 1.89
2 78.97 ± 0.28 63.68 ± 0.72
4 94.30 ± 0.64 71.98 1 ± 2.20
6 69.59 ± 1.45 49.21 ± 0.41
Average 84.76 ± 0.29 66.53 ± 0.62

Valve Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

0 68.76 ± 0.65 51.70 ± 0.19
2 68.18 ± 0.86 51.83 ± 0.31
4 74.30 ± 0.71 51.97 1 ± 0.20
6 53.90 ± 0.38 48.43 ± 0.20
Average 66.28 ± 0.49 50.98 ± 0.15

Table 1: Baseline system results; values in percentage
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Toy Car
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

01 79.91 ± 0.33 71.72 ± 0.79
02 81.81 ± 0.67 77.54 ± 0.65
03 62.81 ± 0.98 52.8 ± 0.38
04 75.50 ± 0.95 65.58 ± 0.81
Average 75.01 ± 0.46 66.91 ± 0.26

Toy Conveyor
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

01 77.21 ± 0.47 63.68 ± 0.35
02 66.25 ± 0.61 55.67 ± 0.33
03 77.67 ± 0.56 59.48 ± 0.22
Average 73.71 ± 0.35 59.61 ± 0.11

Fan Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

00 57.05 ± 0.64 49.61 ± 0.21
02 83.72 ± 0.44 65.24 ± 0.71
04 66.30 ± 0.8 54.46 ± 0.53
06 90.26 ± 0.44 67.62 ± 1.00
Average 74.33 ± 0.43 59.23 ± 0.21

Pump Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

00 63.03 ± 1.0 52.64 ± 0.80
02 55.90 ± 0.77 56.81 ± 0.90
04 97.73 ± 0.34 88.89 ± 1.50
06 78.18 ± 0.38 60.54 ± 0.52
Average 73.71 ± 0.36 64.72 ± 0.59

Slider Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

00 97.56 ± 0.22 87.44 ± 1.08
02 84.83 ± 0.22 65.46 ± 1.04
04 94.77 ± 0.35 72.51 ± 1.77
06 79.27 ± 0.66 52.31 ± 0.56
Average 89.11 ± 0.26 69.43 ± 0.62

Valve Machine
Machine
ID

AUC(Ave.±
Std.)

pAUC(Ave.±
Std)

00 96.59 ± 0.31 82.72 ± 1.37
02 87.34 ± 0.77 59.92 ± 1.15
04 92.49 ± 0.42 67.71 ± 0.91
06 81.59 ± 1.16 56.34 ± 1.14
Average 89.50 ± 0.37 66.67 ± 0.59

Table 2: The proposed system results; values in percentage
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