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ABSTRACT

This paper is a technical report on our method that we submitted
to the DCASE2020 Challenge Task 2. In our method, we first
convert one sample into a log-mel-spectrogram, as in the baseline
system. Next, the log-mel-spectrogram is decomposed into mean
component, basis component and latent component by principal
component analysis, and anomaly score is calculated for these each
components. Then, the final anomaly score was determined by
integrating the calculated anomaly score of each components. Each
anormal score is calculated using Mahalanobis distance, k-nearest
neighbor based on subspace distance, and distance based on matrix
normal distribution.

Index Terms— Matrix Decomposition, Subspace Distance,
Matrix Normal Distribution, Integration of anomaly

1. INTRODUCTION

DCASE2020 Challenge Task 2 is a task to find abnormal data in the
test data set when only normal data is given as training data [1], [2],
[3]. In order to find the abnormal data under such a situation, it is
necessary to detect that the data is in some different state from the
normal data. Therefore, we decompose the log-mel-spectrogram of
the input signal into several components based on the principal com-
ponent analysis, and calculate the distance between each element and
the normal state as the degree of anormality. Finally, the anormaly
score is integrated and the final anormaly score is caliculated. In
addition, all the methods described here learn each Machine Type
and ID individually, and do not use the information of other Ma-
chine Type and ID and other datasets. In the following, we describe
the details of the method adopted in this study. In section 2, We
describe the transformation applied to each time series signal and
the mathematical expression after the transformation. In section 3
we describe a specific method for calculating anomalies. Since we
are allowed to submit up to four different systems, we describe a
variation of the system we have actually submitted in section 4.

2. SIGNAL CONVERSION

In this method, each sample given as a time series signal is con-
verted into a log-mel-spectrogram in the same way as the baseline
system [3]. log-mel-spectrogram can be expressed in a matrix as
X ∈ R�×) . where � is the number of mel-filters and ) is the
number of time-frames. Also, the column vector of the C th column
of the X is defined as x(C) ∈ R� . Thus, X = [x(1) · · · x())].

Then, the training data are #CA08= samples and the test data are
#C4BC samples, the training and test datasets are

{
X1, · · · ,X#CA08=

}
,{

X1, · · · ,X#C4BC

}
. Unlike the baseline system, thismethod does not

combine multiple frames to form one vector.

3. CALCULATION OF ANOMALY SCORE

This method takes the following steps to calculate the anormality
score.
1. Decomposition of the log-mel-spectrogram matrix.
2. Calculate the degree of anomaly for each component.
3. Calculate the final anomaly score by integrating the anoma-
lies.

We describe a deteil of method for each items.

3.1. Decompoosition of the log-mel-spectrogram

If we consider the log-mel-spectrogram matrix X8 in the sample 8
as a set of ) column vectors, each column vector is reduced to the
5 < � dimension using principal component analysis and X8 is
approximated as follows [4].

x8 (C) ∼ W8z8 (C) + m8 (1)
wherem8 ∈ R� is the mean vector of {x8 (1), · · · , x8 ())}(hereafter,
this is called "mean component"). ,8 ∈ R�× 5 is a matrix of
orthonormal basis of low-dimensional subspaces spanned by column
vectors (hereafter, this is the "basis component"). z8 (C) ∈ R 5 is the
low-dimensional latent vector in the C th frame. Then, the matrix
Z8 = [z8 (1) · · · z8 ())] which z8 (C) is arranged in chronological order
as a column vector, is defined as "latent component". Thus, the log-
mel-spectrogrammatrix is divided into three components: the mean
component, the basis component, and the latent component. Once
broken down into components, these are used to calculate each of
the following anomalies.

3.2. Anormalies for each component

3.2.1. Anormaly for mean component

The mean component m can be taken as the strength of each fre-
quency component. The anomaly for the mean component is cal-
culated by a simple Mahalanobis distance. Specifically, since the
training dataset yields a set ofmean component

{
m1, · · · ,m#CA08=

}
,

and the average vector of this set is -, the covariance matrix is �,
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then the mean component anomaly 0< (X∗) for sample X∗ can be
calculated as follows.

0< (X∗) =
√
(m∗ − -)) �−1 (m∗ − -) (2)

3.2.2. Anomaly for basis component

The anomaly for the basis componentW is calculatedwith k-nearest-
neighbor based on the distance between the subspace spanned by the
basis component. The distance between the subspaces is based on
the principal angle[5], [6], [7]. Specifically, the distance between
the low-dimensional subspace of the sample X8 and the sample X 9

is calculated as follows.

SubspaceDist(Xi, Xj) = 1− ‖ WTi Wj ‖22 (3)
In (3), ‖ · ‖2 is the ? = 2 matrix norm and is equal to the

maximum singular value of the matrix. Now that the distances
between the subspaces using the basis components are defined, we
use them to calculate the anomaly for the sample X∗ in k-nearest-
neighbor. From

{
X1, · · · ,X#CA08=

}
, we find the top : values for

which SubspaceDist(X∗,Xi) is smaller. Then, let the average of the
distances be the basis component anomaly 01 (X∗). It is expressed
as follows.

01 (X∗) =
1
:

∑
8∈ 
SubspaceDist(X∗, Xi) (4)

 is the set of indices near : for X∗.

3.2.3. Anomaly for latent component

Since Z is a matrix, the distance based on Matrix Normal Distribu-
tion is used [8]. The Matrix Normal Distribution is a probability
density function for matrix data. Thus, probability density function
for the latent component Z is as follow.

?(Z|M,U,V) =
exp

(
− 12 tr

[
V−1 (Z − M))U−1 (Z − M)

] )
(2c) 5 ) /2 |V|) /2 |U| 5 /2

(5)

M ∈ R 5 ×) , U ∈ R 5 × 5 , V ∈ R) ×) M is the mean matrix,
while U, V can be considered as the covariance matrix in the direc-
tion of frequency and time, respectively. In our method, these are
estimated from the latent component set

{
Z1, · · · ,Z#CA08=

}
of the

training data with maximum likelihood. The direction of the fre-
quency is fixed toU = I because the latent component is expected to
be uncorrelated since the target is a latent component derived from
the principal component analysis. Thereby, the maximum likeli-
hood estimated solution M̂ of M and V is analytically obtained by
the following formula.

M̂ =
1

#CA08=

#CA08=∑
8=1

Z8 (6)

V̂ =
1

5 #CA08=

#CA08=∑
8=1

(Z8 − M̂)) (Z8 − M̂) (7)

Using these maximum likelihood estimation, the anormaly of
latent component 0; (X∗) for the sample X∗ is calculated as follows.

0; (X∗) =
√
tr
(
V̂−1 (Z∗ − M̂)) (Z∗ − M̂)

)
(8)

3.2.4. Anomaly for components that mixtured basis and latent
components

In addition to the anomaly scores for each of the basic components
described above, another anomaly score for a component in which
the basis component and the latent component are mixed can be
considered. Specifically, the distance based on Matrix Normal Dis-
tribution of X′ = WZ = WW)X is the degree of anomaly. In this
case, unlike the previous term, it is not appropriate to consider U
in (5) as an identity matrix, so U is also estimated by maximum
likelihood estimation. In such a case, the maximum likelihood so-
lution cannot be analytically obtained. Therefor Fix one of U and V
and get the optimal solution of the other. Moreover, this process is
alternately repeated to obtain a solution. See [8] for details.
Let this maximum likelihood solution be M̂′, Û′, V̂′, respec-

tively. The anomalous score 01; (X∗) of the basis and latent mixed
components for the sample X∗ is calculated as follows.

01; (X∗) =
√
tr
(
V̂′−1 (X′

∗ − M̂′)) Û′−1 (X′
∗ − M̂′)

)
(9)

3.3. combination of anomalies

Four types of degree of anomaly were defined, one for each com-
ponent and one for mixed components. The final anomaly score is
obtained by combining some of these. If it is truly abnormal, this
degree of anomaly also deviates from the tendency of the learning
data set. In other words, considering a vector in which the cal-
culated degree of anomaly are connected, it is considered that the
abnormality becomes high when the anomaly vector of the test data
is far from the distribution of the anomaly vector of the learning
data. However, it is not considered as anomalous if it deviates from
the distribution in the direction of decreasing anomaly. The specific
procedure for integrating the anomaly is as follows.

1. Calculate each degree of anomaly for all learning data

2. Training data with all components of anomaly smaller than
the median are retained (decimation)

3. Calculate anomaly of each component for test data

4. For each anomaly of test data, if it is smaller than the average
value of the anomaly of the training data left in step 2, replace
it with that average value.

5. Calculate the Mahalanobis distance from the decimated
learning data set for the anomaly vector of the test data sub-
jected to step 4, and use that as the final anomaly score.

Step 2 is a decimation process for reducing the influence of vari-
ations due to outliers included in the learning data set. Depending on
the system submitted, this step may not be performed, as described
below.

4. SUBMITTED SYSTEM VARIATION

Since 4 submissions are allowed for this task, We submitted 4 pat-
terns that changed combination of anomaly ((2), (4), (8), (9)), with
or without decimation, number of dimensions after reduction 5 ,
k-nearest neighbor method : . Specific combinations and hyperpa-
rameter settings are shown in Table 1.
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Table 1: submit system list
No. Abnormality combination decimation 5 :

1 0< , 01 , 0; yes 1 20 5
2 0< , 01 , 0; no 20 5
3 0< , 01 yes 20 5
4 0< , 01; yes 1 -

5. CONCLUSION

We adopted the method of calculating the degree of anomaly for
each component of log-mel-spectrogram and integrating them. This
method is relatively simple then it work with few training time
and small train data size. The inference time is also short, so it
can be used for real-time anomaly detection systems, which makes
it practical. Furthermore, combining with other methods can be
considered (such as other preprocessing, other feature extraction,
using external data and more), which may further improve accuracy.
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