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ABSTRACT

One of the manifold application fields of Deep Neural Networks
(DNN) is the classification of audio signals such as indoor, outdoor,
transportation, humans and animals sounds. DCASE2020 provided
a dataset consisting of 3 classes to perform classification using low
complexity solutions. The dataset was trained using AALNet-94
from our previous research work that performed well in publicly
available datasets such as ESC-50, Ultrasound 8K and audioset.
The results obtained performed well when compared with the base-
line. To maintain the model size below 500Kb (Kilobyte) we per-
formed the pruning technique on the obtained model.

Index Terms— AALNet-94, Audio, DNN, CNN

1. INTRODUCTION

In recent years there is a steady growth in advancement in audio
classification which mainly focuses on speech and music processing
[1].

Convolutional Neural Networks(CNN) that achieved success in
image recognition tasks such as in [2], [3] is recently proved to be
effective in tasks related to 1-Dimensional(1-D) data such as speech
recognition [4] and natural language processing [5].

The amount and quality of training data and how the data is fed
to the machine is very important, in particular for deep learning.
Various approaches have been proposed to improve sound recog-
nition performance. Researchers proposed increasing the training
data variation by altering the shape or property of sounds or adding
background noise [6], [7]. The research community also proposed
using additional training data created by mixing multiple training
examples [8], [5], [9] . To achieve high performance, the author [10]
proposed an architecture named SoundNet which describes the ap-
proach utilizing external data or knowledge. SoundNet learns rich
sound representations using pairs of images and sounds included in
a large amount of unlabeled video datasets. It was developed by
transferring the knowledge of pre-trained large-scale image recog-
nition networks into a sound recognition network by minimizing the
Kullback–Leibler (KL)-divergence between the output predictions
of the image recognition networks and that of the sound network.
Then it uses the output of the hidden layer of the sound recognition
network as features when applying to the target sound classification
problem and classification is performed with linear SVM (Support
Vector Machine) [11], [1].

The audio classification is divided into two parts, designing a
feature extraction for audio data and building a predictive model to
perform the classification. DNN achieve better results in acoustic
sound recognition as well as in speech recognition. The most com-
monly used speech feature techniques are Hidden Markov Model

(HMM), Gaussian Mixture Model (GMM), K- Nearest Neighbour
(KNN), Support Vector Machine (SVM) which are hand tuned and
are not necessarily suitable for acoustic sound recognization [12]
but neural network can directly take a input features such as spectro-
gram and even waveforms, classify them accordingly and achieves
better results [12], [6].

The paper is organized as follows, the feature extraction in sec-
tion 3, followed by network architecture in section 4 and our results
in comparison with the baseline in section 6 .

2. EXPERIMENTAL SETUP

Our hardware and software configuration is described in the follow-
ing bullet points.

• Hardware Configuration:

• Intel Core i7
• 8 GB RAM
• Operating system: Ubuntu 18.04 LTS
• CPU (4 cores @ 2.40 GHz)
• NVIDIA Titan X with 12 GB graphics memory

• Software:

1. Programming Language:

• Python 3.7

2. Libraries:

• CUDA 10.0 tool kit for GPU acceleration
• CUDnn 7.5.4
• Tensorflow=1.15.2
• Keras=2.2.4

3. Dependencies:

• numpy 1.14.2
• scipy 1.0.0
• python speech features 0.6
• pydub 0.21.0
• python-openCV=4.2.0
• librosa=0.7.2
• matplotlib 2.2.0
• cmake 3.5.1
• cython 0.29.2
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• libblas-dev liblapack-dev

3. FEATURE EXTRACTION

Figure 1: Extracted mel spectrograms of samples for airport (top
left), metro (top right), street-traffic (middle left), tram (middle
right), bus (bottom left) and park (bottom right). The spectrograms
are extracted from the audio recording using the the framework li-
brosa. An Fast Fourier Transform (FFT) length of 2048, mel bands
40 with a window length of 0.02 and a step size of 0.00585 for five-
second chunks of each signal has been used.

The DCASE2020 has provided a new dataset called TAU Ur-
ban Acoustic Scenes 2020 3 classes. It consist of 3 major acoustic
scenes namely indoor (airport, indoor shopping malls and metro sta-
tions), outdoor (pedestrain street, public square, street with medium
level of traffic and urban park) and transportation (travelling by bus,
travelling by tram, travelling by underground metro). The dataset
was recorded from a single recording device with a sampling rate of
4 kHz, 24 bit format and each recording is of 10 seconds. The spec-
trograms are extracted from the audio recording using the frame-
work Librosa [13] . Signal were chunked in five-second files using
FFT (Fast Fourier Transform) length of 2048, mel bands of 40 with
a window length of 0.02 and a step size of 0.00585. The extracted
spectrograms are presented in the Figure 1

4. NETWORK ARCHITECTURES

As mentioned earlier, CNNs perform well for acoustic scene clas-
sification. Here, we used our own model taken from our previous
work, named AALNet-94 as shown in Figure 2 [14], [15] which
performed well for ESC-50, Ultrasound 8K and AAL-94 (combina-
tion of ESC-50, Ultrasound 8k and Audioset) datasets. The network
consisting of 5 CNN layers followed by max pooling after each
CNN layer. After 5 CNN layers, a flatten layer and two dense units
(128 and 256 units) with relu as activation function follow. Each
dense units has a dropout value 0.2 and output layer is densely con-
nected with softmax as activation function. The network is trained
for 50 epochs with a batch size of 64. The number of trainable
parameters is 6,174,659. To reduce the no of parameters, optimiza-
tion is performed to reduce the models parameters, the optimization
method is explained in section 5. The other network presented in

figure 3 named as less complex model consisting of 3 layers with
67,331 parameters.

Input Spectrogram
melbands x frames

CNN layer 1, 32 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

CNN layer 2, 64 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

CNN layer 3, 128 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

CNN layer 4, 256 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

CNN layer 5, 512 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

Flatten

Dense 128 units, Relu

Dropout 0.2

Dense 256 units, Relu

Dropout 0.2

no of classes (3 units)
Softmax

Figure 2: Network Architecture- AALNet-94 with pruning for low
complexity acoustic scene classification.

5. HYPERPARAMETERS

To reduce the model complexity we used pruning technique to re-
duce the model size. This technique was adapted from the author
[16] where the author pruned the network to a maximum of 74%.
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Dataset System Modelname Implementation
details

Accuracy Log
Loss

Accuracy
Baseline

Log loss
Baseline

Development
dataset

Subtask 1b
low com-
plexity

AALNet-94 Mel bands +
CNN (AALNet
Architecture)

89.4%
±0.6

1.193
±0.097

87.4%
±0.7

0.437
±0.045

Development
dataset

Subtask 1b
low com-
plexity

less com-
plex

Mel bands +
CNN (AALNet
Architecture)

88.2%
±0.4

0.853
±0.037

87.4%
±0.7

0.437
±0.045

Table 1: Low complexity acoustic scene classification results with baseline.

Input Spectrogram
melbands x frames

CNN layer 1, 16 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

CNN layer 2, 32 filter
7 x 7 kernel size, Relu, Batch norm

Max pooling
2 x 2 kernel size

Dense 64 units, Relu

Dropout 0.2

no of classes (3 units)
Softmax

Figure 3: Network Architecture-less complex model without prun-
ing for low complexity acoustic scene classification.

When looking in to our model, we could findout many of its weights
are close to zero and remove these channels completely from the
layer. This states than most of the weights doesn’t play a signifi-
cant role in the output of neural network. we could remove up to
around maximum of 82% of the CNN channels, and the model con-
tinues to be resilient enough to operate on the remaining 18% of
the channels and retain the original level of accuracy. Keras offers
an optimization library where we can optimize or prune the model
up to 95% by maintaining the actual accuracy. The 95% pruning
technique was applied on Keras Mnist model [17].

6. RESULTS

The table 1 presents the performance was evaluated based on the
validation split in the development dataset and an evaluation dataset
provided separately.

7. CONCLUSION

In this paper we present a solution using our existing network
named AALNet-94 submitted to DCASE 2020 challenge task 1
acoustic scene classification. There are two different task related to
real world problem. Here we focused on subtask 2 to provide a low
complexity solution. we developed two models, where AALNet-94
model was optimized to have less parameters and other model less
complex model is not optimized since it is of low complexity.
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D. Lee, O. Nieto, E. Battenberg, D. Ellis, R. Yamamoto,
J. Moore, R. Bittner, K. Choi, P. Friesch, F.-R. Stöter,
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