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ABSTRACT
In this technical report, we address the UOS submission for the De-
tection and Classification of Acoustic Scenes and Events 2020 Chal-
lenge Task 1-a. We propose to utilize the representation vectors,
extracted from a pre-trained audio tagging system, for the acous-
tic scene classification task. Audio tagging denotes the existence
of various sound events and is known to help the classification of
acoustic scene. To select suitable feature for the acoustic scene clas-
sification task, we also explore deep architectures such as light con-
volutional neural networks and convolutional block attention mod-
ule. Experiments are conducted using the official fold-1 configura-
tion test set. Results using audio tagging representation and deep ar-
chitectures demonstrate accuracies of 68.8% and 70.5%, compared
to that of 65.3% of the baseline. Additionally, score-sum ensemble
of the two proposed systems has an accuracy of 71.9% which shows
10.1% relative improvement.

Index Terms— Acoustic scene classification, audio tagging,
deep architecture, deep neural network

1. SYSTEM DESCRIPTION

This technical report addresses the submission of the University of
Seoul (UOS) team for the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2020 Challenge task 1-a [1]. We first
introduce our baseline system that inputs Mel-spectrograms and
conduct the acoustic scene classification (ASC) task in an end-to-
end fashion. Two proposed systems are introduced, where one ex-
plore audio tagging representation [2] and deep architectures [3, 4].
Our priority in this report is to detail our choices made on various
hyper-parameters for input feature selection, deep neural network
(DNN) architecture, and others for making our work reproducible.
Hypotheses, inspirations, and other details will be dealt in our aca-
demical paper which will be submitted to the DCASE 2020 work-
shop.

2. INPUT FEATURE EXTRACTION

Across all systems, we use Mel-spectrograms as input to the DNN.
Pre-emphasis with 0.97 coefficient and utterance-level mean and
variance normalization are applied before and after extracting Mel-
spectrograms. Mel-spectrograms are extracted using 128 Mel-
filterbanks. The number of fast Fourier transform bin is 2048 and
the length of the window and shift size are 40ms and 20ms, re-
spectively. We use the original sampling rate of 44.1 kHz with-
out utilization of any re-sampling methods. We use the torchaudio
∗Equal contribution
†Corresponding author

Table 1: The baseline system architecture (l: length of input se-
quence).

Type Filter/Stride Output
Conv Block 1 3 × 3 / 1 × 1 l × 128 × 16

SE-Res 1 3 × 3 / 1 × 1 l × 128 × 16
SE-Res 2 3 × 3 / 3 × 6 (l / 6) × 43 × 32
SE-Res 3 3 × 3 / 5 × 5 (l / 30) × 9 × 64
AvgPool Global 64

FC 1 - 64
FC 2 - 10

Table 2: Common hyper-parameters for training models.

Hyper-parameter

epoch 800
batch size 24
optimizer SGD
data augmentation mixup (a = 0.1) [5]
initial learning rate 0.001
learning rate scheduling cosine annealing warm restarts

package in PyTorch library, which is a Python-based deep learning
toolkit.

3. BASELINE ARCHITECTURE

The baseline used in this paper is a variant of the SE-ResNet [6]
which is an end-to-end ASC system. Table 1 describes the struc-
ture of the baseline. Conv Block is composed of convolution layer
(Conv), batch normalization layer (BN) [7], and rectified linear unit
(ReLU) layer. SE-Res corresponds to a sequence of layers, Conv-
BN-ReLU-Conv-BN-Squeeze-Excitation, with a residual connec-
tion [8]. SE-Res 1, SE-Res 2, and SE-Res 3 comprise 3, 4, and 6
SE-Res blocks, respectively. The utterance-level feature aggregated
from average pooling is classified into 10 defined scene classes
through two fully-connected layers (FC). All experiments through-
out this technical report, including the baseline, are performed using
hyper-parameters denoted in Table 2.

4. ASC USING AUDIO TAGGING REPRESENTATION

4.1. Audio tagging system

Audio tagging is the task of recognizing the existence of various
sound events that reside in an input audio recording. In the authors’
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Figure 1: Framework of the tagging representation guided dual at-
tention network for ASC.

previous study [2], it was proposed that using the output layer of
an audio tagging system can be helpful for the ASC task. In this
technical report, we propose to use the last hidden layer instead of
the audio tagging system’s output, which we refer to as ’tagging
representation’. The audio tagging system used in this study is that
of Akiyama et. al. [9] which won the DCASE 2019 challenge task
2. Additional details and code of this system are provided in [9]1

4.2. Tagging representation guided dual attention network for
ASC

The proposed overall ASC system using tagging representation is
depicted in Figure 1. Mel-spectrogram derived from audio is input
in parallel to the ASC system and audio tagging system. The fea-
ture map extracted from the ASC system is used as the output of the
last SE-Res block of the baseline system. The tagging representa-
tion calculated from the audio tagging system is converted into dual
attention maps [10]. The positional attention map and the channel
attention map perform element-wise multiplication for each channel
and position in the feature map, respectively. Each calculated vector
is added to each element and converted into a final feature map. The
final feature map performs ASC through an average pooling layer
and two FC layers.

5. DEEP ARCHITECTURE FOR ASC

To extract discriminative feature for ASC, we explored deep archi-
tectures. For training acoustic scenes classifier, we use the light
convolutional neural networks (LCNN) framework [3]. LCNN ar-
chitecture was first introduced for deep face representation with
noisy labels. We assume that LCNN architecture with MFM op-
eration that extracts feature maps via a competitive relationship will
increase the accuracy of the ASC task. MFM operation focuses on
important information through the attention technique without dis-
carding relatively sparse information. To the best of our knowledge,
this technical report is the first to adopt a LCNN for the ASC task.
We use a LCNN architecture which is similar to that of [11], with
some modifications that can be found in Table 3. To emphasize use-
ful information, convolutional block attention module (CBAM) [4]
is exploited before pooling layer or batch normalization. CBAM is a
simple self-attention module with less computational and parameter
overhead. We also utilize specaugment [12] for data augmentation

1https://github.com/OsciiArt/
Freesound-Audio-Tagging-2019.

Table 3: The LCNN architecture. The numbers in the Output shape
column refer to the frame (time), frequency, and number of filters.
Conv, MFM, MaxPool and FC indicate convolutional layer, Max-
Feature-Map, max pooling layer and fully-connected layer, respec-
tively.

Type Filter/Stride Output
Conv 1 7 × 3 / 1 × 1 l × 124 × 64
MFM 1 - l × 124 × 32

MaxPool 1 2 × 2 / 2 × 2 (l / 2) × 62 × 32
Conv 2a 1 × 1 / 1 × 1 (l / 2) × 62 × 64
MFM 2a - (l / 2) × 62 × 32

BatchNorm 2a 2 × 2 / 2 × 2 (l / 2) × 62 × 32
Conv 2 3 × 3 / 1 × 1 (l / 2) × 62 × 96
MFM 2 - (l / 2) × 62 × 48

CBAM 2 - (l / 2) × 62 × 48
MaxPool 2 2 × 2 / 2 × 2 (l / 4) × 31 × 48

BatchNorm 2 2 × 2 / 2 × 2 (l / 4) × 31 × 48
Conv 3a 1 × 1 / 1 × 1 (l / 4) × 31 × 96
MFM 3a - (l / 4) × 31 × 48

BatchNorm 3a 2 × 2 / 2 × 2 (l / 4) × 31 × 48
Conv 3 3 × 3 / 1 × 1 (l / 4) × 31 × 128
MFM 3 - (l / 4) × 31 × 64

CBAM 3 - (l / 4) × 31 × 64
MaxPool 3 2 × 2 / 2 × 2 (l / 8) × 16 × 64

Conv 4a 1 × 1 / 1 × 1 (l / 8) × 16 × 128
MFM 4a - (l / 8) × 16 × 64

BatchNorm 3a 2 × 2 / 2 × 2 (l / 8) × 16 × 64
Conv 4 3 × 3 / 1 × 1 (l / 8) × 16 × 64
MFM 4 - (l / 8) × 16 × 32

CBAM 4 - (l / 8) × 16 × 32
BatchNorm 4 2 × 2 / 2 × 2 (l / 8) × 16 × 32

Conv 5a 1 × 1 / 1 × 1 (l / 8) × 16 × 64
MFM 5a - (l / 8) × 16 × 32

BatchNorm 5a 2 × 2 / 2 × 2 (l / 8) × 16 × 32
Conv 5 3 × 3 / 1 × 1 (l / 8) × 16 × 64
MFM 5 - (l / 8) × 16 × 32

CBAM 5 - (l / 8) × 16 × 32
MaxPool 5 2 × 2 / 2 × 2 (l / 16) × 8 × 32

FC 1 - 160
MFM FC1 - 80

FC 2 - 10

with mixup, when we train the network without tagging representa-
tion. We only use frequency and time masking except time warping
as there is little improvement in performance.

6. RESULTS

Following the fold 1 evaluation setup for DCASE2020 task1-a, Ta-
ble 4 describes class&device-wise classification accuracies of the
baseline and the ensemble of two proposed systems. The proposed
system demonstrates higher classification accuracies across all nine
devices including 6 augmented devices. In terms of each acoustic
scene, the proposed system outperformed the baseline in all scenes
but Street traffic in which accuracy decreased from 82.0% to 78.1%.
The average of class&device-wise accuracy increased from 65.3%
to 71.9% showing 10.1% relative improvement over the baseline.

The results of fold 1 for the four submitted systems are shown
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Table 4: Comparison of class&device-wise classification accuracies of the baseline and the proposed system on fold1 test set (base-
line/proposed, %). Bold describes higher accuracy in each scene&device.

A B C S1 S2 S3 S4 S5 S6 Average

Airport 63.4/71.9 69.7/70.6 72.4/78.1 57.1/75.0 51.5/63.9 64.0/71.4 54.5/68.8 61.8/65.6 58.8/67.7 61.4/70.3

Bus 83.8/90.9 80.0/100 85.7/84.2 73.0/73.0 77.1/81.8 78.1/82.9 81.0/76.9 78.8/85.7 71.9/81.3 78.8/84.1

Metro 75.0/82.4 72.7/70.0 68.9/71.9 73.1/82.1 61.3/70.6 60.6/76.9 69.6/75.0 68.8/83.9 63.7/72.7 68.2/76.2

Met sta 60.5/75.0 59.4/75.8 46.8/61.8 60.6/79.4 58.8/61.9 67.7/75.0 56.8/79.3 64.1/74.3 47.1/71.0 58.0/72.6

Park 81.6/79.4 66.0/73.7 90.0/83.9 73.6/77.4 77.4/86.7 72.5/74.3 78.4/84.4 63.4/80.0 68.4/85.7 74.6/80.6

Pub squ 66.7/79.2 52.4/56.7 58.5/60.0 61.9/76.0 70.8/62.1 71.4/80.0 62.5/59.3 68.4/64.0 57.1/61.3 63.3/66.5

Shop mall 59.4/52.8 47.1/53.1 73.1/74.1 57.5/57.1 41.0/61.8 38.6/52.8 50.0/53.1 58.8/59.5 54.5/57.1 53.3/57.9

Street pede 61.3/60.0 57.6/68.8 52.4/64.0 50.0/62.1 35.1/66.7 50.0/63.3 37.9/43.8 58.1/59.3 41.4/66.7 49.3/61.6

Street traf 84.8/73.3 75.7/82.9 82.4/76.9 80.0/78.4 82.9/78.4 82.9/76.3 88.2/74.4 79.4/81.6 82.1/80.6 82.0/78.1

Tram 72.4/82.4 75.0/78.1 65.8/67.6 57.6/66.7 61.3/74.2 65.7/68.3 69.4/69.4 60.6/67.6 51.2/66.7 64.3/71.2

Average 70.9/74.7 65.6/73.0 69.6/72.3 64.4/72.7 61.7/70.8 65.2/72.1 64.8/68.4 66.2/72.2 59.6/71.1 65.3/71.9

Table 5: Results of submitted systems on the fold 1 test set.

System ID Accuracy(%)

#1 71.9
#2 71.0
#3 70.5
#4 68.8

in Table 5. Note that for actually submission, we self-configured
fold 2 through fold 4 and conducted score-sum ensemble. We ap-
plied a test time augmentation (TTA) method for extracting embed-
dings to train support vector machine (SVM) classifier and evalua-
tion phase [13]. Model ensemble is conducted in score-level after
training SVM classifier with rbf kernel only or both rbf and sigmoid
kernels. Submitted 4 systems are as follows :

1. Ensemble of tagging representation and deep architecture
(SVM: rbf, sigmoid)

2. Ensemble system of tagging representation and deep archi-
tecture (SVM: rbf)

3. Deep architecture system (SVM: rbf)

4. Tagging representation system (SVM: rbf, sigmoid)

The performance of the submitted four systems on the fold1 test set
shown in Table 5, sequentially. All four systems reported higher
accuracy than the baseline, and the ensemble system #1 and #2
showed higher performance than the single system #3 and #4.
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