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ABSTRACT

This technical report describes the IITMandi AudioTeam’s sub-
mission for ASC Task 1, Subtask B of DCASE2020 challenge. This
report aims to design low-complexity systems for acoustic scene
classification. We propose a convolution neural network based end-
to-end classification framework. The proposed framework learns
from raw audio directly. We present performance analysis of vari-
ous frameworks with model size lesser than 500KB for classifica-
tion. The three acoustic scenes namely indoor, outdoor and trans-
portation are considered. Our experimental analysis shows that the
proposed end-to-end framework, where features are being learned
from raw audio directly, with a model size of approx. 77KB gives
similar performance on development dataset as that of baseline1

system proposed for the same task.

Index Terms— Acoustic scene classification, Low-complexity,
Convolution neural network.

1. INTRODUCTION

Acoustic scene classification (ASC) aims to classify surrounding
physical environment into pre-defined categories using sound in-
formation. There exist many real time applications such as context
aware services, home surveillance etc. [1]. The ASC systems can be
used on portable devices, which has limited storage. In this regard,
detection and classification of acoustic scenes and events (DCASE)
2020 challenge aims to come up with low-complexity solutions with
a memory constraint of less than 500KB. This report aims to target
the DCASE ASC Subtask B [2].

Traditionally, the features inspired form speech and music pro-
cessing tasks such as time-frequency representations, mel cepstral
coefficients, constant-Q-transform are being utilized in acoustic
scene classification [3]. Since, the characteristic of acoustic signal
produced in the surrounding is very different from speech and music
signal in terms of wider pitch, multiple unknown sound sources with
varying characteristics, unstructured signal etc. This requires adap-
tive feature representations to cope up the complexity and variabil-
ity of acoustic signals in ASC. In this regard, many of the works tar-
get on feature learning, which aims to learn from the low-level rep-
resentations obtained using time-frequency representations [4, 5, 6].
Some of the studies also employ to use transfer-learning based rep-
resentations [7, 8].

In this report, our aim is to learn representations using raw au-
dio directly. This gives advantage in two ways; first, the feature
representations can be adaptively learned from the raw audio it-
self, with an end-to-end classification framework. Second, the com-
plexity in feature representation and classification can be reduced.

1Baseline uses Log-mel band energies as features and 2-layer CNN with
1 fully-connected layer for classification.

Therefore, we propose an end-to-end convolution neural network
(CNN) based classification framework. The performance is an-
alyzed by varying the complexity or model size of the proposed
framework.

The rest of the report is organized as follows. In section 2,
the proposed framework is explained. Performance analysis and
conclusions are included in section 3 and 5 respectively.

2. PROPOSED METHODOLOGY

In this section, we describe various end-to-end CNN-based archi-
tectures designed for experimentation, training and evaluation pro-
cedure.

2.1. Various CNN models

Model (A): CNN-205KB

CNN-205KB architecture is a 1D-CNN with model size 204.9KB2.
The architecture is shown in Figure 1(a). The model consists of
three convolution layers, a fully-connected layer (FC) and a classi-
fication layer with 3-units having softmax activation function. Each
of the convolution layer is followed by batch normalization layer
(BN), activation layer using ReLU and a pooling layer either locally
average pooling or global average pooling. The number of filters,
length of each filter, pooling size and number of units in FC-layer
are mentioned in the Figure 1(a). The CNN-205KB has 52467 total
and 52467 non-zero parameters number of parameters2.

Model (B): CNN-73KB

CNN-73KB architecture is a 1D-CNN with model size 72.7KB. The
architecture is shown in Figure 1(b). There are two convolution lay-
ers which are similar to the first two layers of a network, SoundNet
[8]3. This is followed by global average pooling, a FC-layer and a
classification layer. The initial weights of the convolution layers of
CNN-73KB model are taken from pre-trained weights of first two
layers of SoundNet. The CNN-205KB has 18611 total and 18611
non-zero parameters number of parameters.

Model (C): CNN-77KB

CNN-77KB architecture is a 1D-CNN with model size 77.2KB.
CNN-77KB has similar architecture to that of CNN-77KB except
the FC-layer has 64 units. The architecture is shown in Figure 1(c).
The CNN-205KB has 19763 total and 19763 non-zero parameters.

2CNN model size, number of total and non-zero parameters are com-
puted using the script model size calculation.py as given in DCASE 2020
challenge.

3SoundNet is a pre-trained, 1D-CNN, which is trained using transfer-
learning from 2 million videos.

https://github.com/toni-heittola/dcase2020_task1_baseline/blob/master/model_size_calculation.py/
https://github.com/toni-heittola/dcase2020_task1_baseline/blob/master/model_size_calculation.py/
https://github.com/toni-heittola/dcase2020_task1_baseline/blob/master/model_size_calculation.py/
http://soundnet.csail.mit.edu/
http://soundnet.csail.mit.edu/
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Figure 1: Various architecture details (a) model 1, (b) model 2, (c) model 3 and (d) model 4. The architectures (a), (b), (c) and (d) has
a memory size 204.9KB, 72.7KB, 77.2KB and 277.1KB respectively. Here, BN, ReLU, Conv, GlobalAvgPool and FC represents batch
normalization layer, rectified linear unit activation function, convolution operation, global average pooling operation and fully connected
layer respectively.

Model (D): CNN-277KB

The CNN-277KB has a model size 277.1KB. The model is ob-
tained by concatenating the embeddings obtained from global av-
erage pooling layer of Model A and Model C, followed by a FC-
layer with 32-units and a classification layer. The CNN-277KB has
70947 total and 70947 non-zero parameters number of parameters2.

2.2. Training and evaluation procedure

A given audio recording is divided into M smaller non-overlapping
segments, {x1, x2, ..., xM}. Each segment xi ∈ Rd is considered
as a training instance. This gives a training data matrix ∈ Rd×T ,
with total number of training instances, T = N ×M , each of size
d. Here, N indicates total number of audio examples for training.

The CNN model is trained with T -segments. During evalua-
tion, the probabilities obtained from M -segments are averaged to
obtained final scores. The ultimate class of a test audio recording is
chosen corresponding to the class having maximum final score.

3. PERFORMANCE ANALYSIS

In this section, dataset used for evaluation, training, validation setup
and performance analysis of the proposed framework is described.

3.1. Dataset used and Experimental setup

DCASE2020 Task 1 Baseline, Subtask B fold1 development dataset
is used for evaluation. The dataset consists of audio recordings of
10s sampled at 48kHz from three scene classes namely indoor, out-
door and transportation. The total number of training and testing
examples are 9185 and 4185 respectively.

An audio recording is downsampled to 16kHz and divided into
non-overlapping 80-segments (M=80). The gives a total of 734800
segments. We randomly select 80% of segments for training, hence,

training data matrix ∈ R2000×587840. The rest of the 146960 seg-
ments are used for validation. Each of the model (A)-(D) is trained
for 50 epochs using Adam optimizer. Accuracy and Log loss metric
are used for performance analysis.

Initial weights for model (A)-(D)

• Model (A): All the parameters are randomly initialized and up-
dated in training.

• Model (B): The parameters of both convolution layers are ini-
tialized with pre-trained parameters of SoundNet. The param-
eters of fully-connected layer are initialized randomly. All the
parameters are updated in training.

• Model (C): The parameters of both convolution layers are ini-
tialized with pre-trained parameters from first two layers of
SoundNet. The parameters of fully-connected layer are ini-
tialized randomly. All the parameters are updated in training.

• Model (D): The parameters of all layers except fully-connected
layers are taken from the trained parameters of model (A) and
model (C). The model (A) and model (C) are trained using the
training data matrix as explained above. During training of the
Model (D), only the parameters of fully-connected layer are
updated.

The trained models and the relveant codes can be found at given
link4.

3.2. Results

Table 1 shows performance analysis of various proposed CNN ar-
chitectures as explained in Section 2.1 and baseline model. The
baseline model uses Log-mel energies as features and CNN with

4https://cloud.iitmandi.ac.in/d/bd487a2974f24e6fabf1/

https://cloud.iitmandi.ac.in/d/bd487a2974f24e6fabf1/
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Table 1: Performance analysis of DCASE 2020 Task 1, Subtask B development test dataset using various proposed CNN architectures as
explained in Section 2.1. The performance of baseline framework[2] is also mentioned.

Various classification models

Baseline Model (A)
CNN-205KB

Model (B)
CNN-73KB

Model (C)
CNN-77KB

Model (D)
CNN-277KB

Model size2 450.1KB 204.9KB 72.7KB 77.2KB 277.1KB

Class-wise
Accuracy

Indoor 82% 77.6% 81.4% 78.8% 87.4%
Outdoor 88.5% 83.5% 83.8% 89.1% 82.42%

Transportation 91.5% 93.9% 93.1% 91.9% 92.8%

Class-wise
Log loss

Indoor 0.680 0.626 0.579 0.586 0.463
Outdoor 0.365 0.396 0.383 0.331 0.397

Transportation 0.282 0.250 0.295 0.298 0.270
Average Accuracy 87.3% 84.9% 85.9% 86.8% 87.2%
Average Log loss 0.437 0.422 0.416 0.399 0.378

2 convolution layers and 1 fully-connected layer for classification.
As compared to baseline, our proposed architectures are end-to-end.
This means there is no extra computation and memory cost of fea-
ture representation. The performance obtained using CNN-77KB,
approximately similar to that of baseline. Moreover, the CNN-
77KB has approx. 83% lesser model size as compared to that of
baseline. The models (B) and (C), which uses pre-train information
to initialize the parameters and have fewer parameters, gives better
performance as compared to the model (A), where parameters are
initialized randomly. Model (D), where embeddings obtained from
trained model (A) and model (B) are used to learn classifier, gives
better performance than the individual models.

4. CHALLENGE SUBMISSION

We submit four results obtained using the four models (A)-(D) as
a final submission for evaluation dataset. The following filenames
are used in the submission.

1. Singh IITMandi task1b 1 : Predictions generated by Model
(A).

2. Singh IITMandi task1b 2 : Predictions generated by Model
(B).

3. Singh IITMandi task1b 3 : Predictions generated by Model
(C).

4. Singh IITMandi task1b 4 : Predictions generated by Model
(D).

5. CONCLUSION

This report focuses on low-complexity system for acoustic scene
classification. We propose an end-to-end convolution neural net-
work framework, which learns from the raw audio directly. The
proposed framework provides similar results as that obtained us-
ing commonly used Log-mel features, but with low-complexity, in
terms of memory and feature computation.
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