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ABSTRACT 

This technical report describes our Acoustic Scene Classification 

systems for DCASE2020 challenge Task1. For subtask A, we 

designed a single model implemented with three parallel ResNets, 

which is named Trident ResNet. We have confirmed that this 

structure is beneficial when analyzing samples collected from 

minority or unseen devices, and confirmed 73.7% classification 

accuracy for the test split. For subtask B, we used the Inception 

module to build a model named Shallow Inception that has fewer 

parameters than the CNN of the DCASE baseline system. Due to 

the sparse structure of the Inception module, we have enhanced 

the accuracy of the model up to 97.6%, while reducing the number 

of parameters. 
Index Terms— Acoustic Scene Classification, 

Convolution Neural Network, Residual block, Inception 

module, ResNet 

1. INTRODUCTION 

Acoustic Scene Classification (ASC) is a task of classifying given 

data to a place where it was recorded. Each data corresponds to 

one class out of ten, and there is no data with multiple labels. The 

length of the data is ten seconds, but the useful information appears 

very rarely. This task is one of the major topics that has been 

covered every year in the DCASE challenge. This year, the ASC 

task was released in two subtasks: Subtask A for multiple devices 

dataset, and Subtask B for designing the Low-complexity model 

[1]. 

The main issue of the subtask A is to design a classifier that 

works stably on various microphone types. However, the 

development dataset mostly includes the data collected from a 

specific microphone, and the evaluation data will include data 

recorded with a microphone that has not appeared in the 

development set. This task was treated in the previous year, and [2] 

was placed on top with spectrum correction method and 

Convolutional Neural Network (CNN) model. 
In the case of subtask B, the audio files in the dataset are 

identical to the previous year, but only change in labels: ten classes 

were merged into three. The main issue of this task is to design a 

model under 500 kilobytes. This corresponds to 128K when 

converted to a 32-bit floating-point per parameter. It is very small 
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number considering last year’s participants submitted more than 

millions or billions of parameters. 
The following sections include details of our model structure 

and training methods. Due to the model size limitation in subtask 

B, it became impossible to solve both problems with a universal 

model design. Therefore, we separated the descriptions for subtask 

A and B if necessary. 

2. DATASETS 

2.1. Subtask A: TAU Urban Acoustic Scene 2020 Mobile 

The development dataset of TAU Urban Acoustic Scene 2020 

Mobile, which contains 23,040 samples, was used to train and 

validate the model. This dataset consists of various audio samples 

collected from three real devices and six simulated devices. Most 

of the data were collected from device A, a binaural microphone, 

and data from Samsung Galaxy S7 and iPhone SE are also 

included. According to the organizer’s report, the evaluation 

dataset will include samples from GoPro Hero5 Session. The 

simulated devices are synthesized by processing the data of device 

A with various impulse responses and dynamic range 

compression. The organizer of the challenge provides basic 

metadata of training/test split consisting of 13,965 samples in the 

training set and 2,970 samples in the test set. 

2.2. Subtask B: TAU Urban Acoustic Scenes 2020 3Class 

The dataset of subtask B is the development dataset of TAU 

Urban Acoustic Scenes 2020 3Class, which contains 14,400 

samples. This is the same dataset used in Subtask A of 

DCASE2019 that consists of ten different acoustic scenes from 

twelve European cities. The only change is that ten labels have 

been changed into three labels: indoor, outdoor, and 

transportation. The organizer of the challenge provides basic 

metadata of the training/test split consisting of 9,185 samples in 

the training set and 4,185 samples in the test set. 
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3. SYSTEM ARCHITECTURE 

3.1. Data Preprocessing 

3.1.1. Subtask A: log Mel spectrogram with deltas/delta-deltas 

The data of subtask A are mono audio files with 44.1 kHz sample 

rate. We transformed them into power spectrogram by skipping 

every 1024 samples with 2048 length Hann window. A spectrum 

of 431 frames was yielded from 10 seconds audio file, and each 

spectrum was compressed into 256 bins of Mel frequency scale. 

Additionally, deltas and delta-deltas were calculated from the log 

Mel spectrogram and stacked into the channel axis. The number 

of frames of the input feature is cropped by the length of the delta-

delta channel so that the final shape becomes [256 × 423 × 3]. 

3.1.2. Subtask B: log Mel spectrogram 

The data of subtask B are stereo audio files with 48 kHz sample 

rate. We transformed them into log Mel spectrogram with the 

same strategy we’ve conducted on subtask A, without deltas and 

delta-deltas. The final shape of input feature data is [256 × 469 ×
2]. 

3.2. Data Augmentations 

We only utilized training split of the challenge dataset, and applied 

data augmentation to increase the diversity of data distribution. 

Our data augmentation strategies are listed in Table 1. The 

augmented data were generated from each mini-batch consisting 

of 64 samples during the training process in real-time. 

Table 1: List of data augmentation strategies 

Strategy Parameter 

Temporal crop Crop length = 5 seconds 

Mixup [3] Alpha = 2.0 

3.3. Model Design 

3.3.1. Subtask A: Trident ResNet model 

Previous studies have verified the effectiveness of the ResNet [4] 

on the ASC [5, 6, 7]. A Residual block in our model consists of 

two 3 × 3 convolution blocks sequentially and an identity path 

with zero-padding after average pooling as shown in Figure 1. 

Each convolution block is pre-activation convolution so that the 

layer order is BatchNormalization-ReLU-Convolution. Gamma 

and beta terms are not used in Batch Normalization layers except 

for the first layer, and there is no bias term in Convolution layers. 

Kernels are initialized with He normal distribution [8] and 

regularized with L2 regularization of 5 × 10−4 . Detailed 

descriptions are written in the following subsections. 

 

 

Figure 1: Residual block with pre-activation 

The previous study [9] claimed that the proper size of the 

receptive field is crucial for the ASC task. They confirmed that the 

CNN with a large receptive field is overfitting for ASC data, and 

proposed a method to increase the classification performance by 

restricting the receptive field. Also, they evaluated the frequency 

and frame axis separately, and found that the model performance 

is sensitive to the size of the frequency axis. Similar concept can 

be seen in the model structure of [6]. Their model reduces the time 

information by striding of the convolution filters but preserves the 

frequency bins. Inspired by the model structure of [6], we 

conducted a grid search to find the appropriate receptive field for 

the input feature prepared in 3.1.1. We adjusted the receptive field 

size of our ResNet by stacking the residual blocks: the deeper the 

network, the wider the receptive field. Additionally, we introduced 

the frequency-wise dilated convolution layers after the frame-wise 

stride convolution layers to increase the receptive field size on the 

frequency axis. The detailed configurations of our ResNet are 

shown in Table 2. 

Table 2: Block configurations of our ResNet. 

Block name Configuration 

Input  

BatchNorm Learn 𝛾 and 𝛽 

Conv2D (1 × 2) strides 

Residual  

Residual (2 × 1) dilation on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (1 × 2) strides on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (1 × 2) strides on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (1 × 2) strides on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Residual (2 × 1) dilation on the first Conv 

Output  

 
We arranged the ResNets in parallel and concatenated their 

outputs for classification. This parallel structure has been proposed 

in [6] and [10] to learn distinct features from different frequency 

bands. Our model consists of three paths for 0-63, 64-127, and 

128-255 Mel bins. We’ve also evaluated the dual parallel structure, 

which splits the Mel bins in half, but the triple architecture 



Detection and Classification of Acoustic Scenes and Events 2020  Challenge 

  

performed better for minority/unseen devices. After concatenating 

the outputs from each network, two blocks of 1 × 1 convolution 

and Global Average Pooling (GAP) calculates the classification 

scores. The overall structure of our model is shown in Figure 2. 

 

 

Figure 2: Overall structure of Trident ResNet model. 

3.3.2. Subtask B: Shallow Inception model 

The Inception module is a convolution block that prevents the 

overfit by reducing the parameters with sparse connectivity [11]. 

We’ve confirmed that the Inception module proposed in [12] 

performed better than the original structure of GoogLeNet. The 

proposed module composes a pooling path with average pooling 

as shown in Figure 3. 

 

 

Figure 3: Inception module with dimension reduction 

We implemented Shallow Inception model by stacking blocks 

to the depth where the performance is saturated within limited 

parameters. And to compensate for the flexibility of the model due 

to insufficient depth, the Batch Normalization layer was 

configured to learn the beta terms. Kernels are initialized with 

He normal distribution and regularized with L2 

regularization of 1 × 10−4. Table 3 is the overall structure of 

our model. 

 

 

 

 

Table 3: Overall structure of Shallow Inception model 

Block name Configuration Output shape 

Input  [256 × 469 × 2] 
BatchNorm Learn 𝛾 and 𝛽 [256 × 469 × 2] 

Conv2D (1 × 2) strides [256 × 235 × 64] 
BN-ReLU Learn 𝛽 [256 × 235 × 64] 
Inception  [256 × 235 × 128] 
AvgPool (1 × 3) pooling [256 × 78 × 128] 
Inception  [256 × 78 × 160] 
Conv2D (1 × 1) kernel [256 × 78 × 128] 

BN-ReLU Learn 𝛽 [256 × 78 × 128] 
Conv2D (1 × 1) kernel [256 × 78 × 3] 

BatchNorm Learn 𝛾 and 𝛽 [256 × 78 × 3] 
GAP  [3] 

Output Softmax [3] 

3.4. Categorical Focal Loss 

Focal loss [13] attenuates the log-loss generated by well-trained 

samples, so that the model can focus on the poorly trained samples. 

The following equation describes focal loss with balancing 

parameter 𝛼, focusing parameter 𝛾 and prediction score 𝑝𝑡, 

 

𝐹𝐿(𝑝𝑡) = −𝛼(1 − 𝑝𝑡)𝛾log (𝑝𝑡)  (3) 

 
Increasing the value of 𝛾 increases the sensitivity of the model 

to misclassified samples, and 𝛼 scales the loss function linearly. 

Our setting was 2.0 and 0.25, respectively. 

3.5. Training Setup 

We trained our model using Stochastic Gradient Descent (SGD) 

optimizer with a momentum of 0.9. The learning rate is controlled 

by a cosine annealing schedule and restarts with initial learning 

rate lr at 2, 6, 14, 30, 126, and 254 epochs. The value of lr, which 

is 0.1 at 0 epoch, decreases by 10% for each restart. The cosine 

scheduler decays the learning rate to 𝑙𝑟 × 10−4, so the model can 

explore deeper areas on the hyperplane for each restart. 

3.6. Snapshot ensemble [14] 

We saved snapshots every cycle of the training process, and 

combined them to build an ensemble model that outperforms a 

single model. The submitted ensemble systems of subtask A 

consisted of models trained at 62, 126, and 254 epochs. And the 

submitted ensemble systems of subtask B consisted of models 

trained at 254 and 510 epochs. The scores from each model were 

averaged, or weighted averaged to make ensemble prediction. 

4. RESULTS 

This section reports the average of the class-wise accuracies of our 

submitted systems for the train/test split. System 1 of each subtask 

was trained with the provided train split, while the other systems 

2, 3, and 4 were trained with the entire development set. Therefore, 

the results for the test split of system 1 and 2 are the same. 
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Table 4: Test split results of subtask A development set 

ID System name Accuracy 

- DCASE2020 Task1 Baseline, Subtask A 54.1 % 

1 TridentResNet_DevSet 73.7 % 

2 TridentResNet_EvalSet 73.7 % 

3 TridentResNet_Ensemble 74.2 % 

4 TridentResNet_Weighted_Ensemble 74.4 % 

 

Table 5: Test split results of subtask B development set 

ID System name Accuracy 

- DCASE2020 Task1 Baseline, Subtask B 87.3 % 

1 ShallowInception_DevSet 97.6 % 

2 ShallowInception_EvalSet 97.6 % 

3 ShallowInception_Ensemble 97.5 % 

4 ShallowInception_Weighted_Ensemble 97.7 % 
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