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ABSTRACT

This report describes a submission for IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020 for Task 1 (Acoustic Scene Classification (ASC)),
sub-task A (ASC with multiple devices) and sub-task B (low-
complexity ASC). The systems exploit time-frequency represen-
tation of audio to obtain the scene labels. The system for sub-
task A follows a simple pattern classification framework employ-
ing wavelet transform based mel-scaled features along with support
vector machine as classifier. Texture features, namely local binary
pattern, extracted from log of mel-band energies is used in a simi-
lar classification framework for sub-task B. The proposed systems
outperform the deep-learning based baseline systems with the de-
velopment dataset provided for the respective sub-tasks.

Index Terms— Haar function, LBP, spectral features, SVM,
wavelet transform.

1. INTRODUCTION

Acoustic scene classification (ASC) [1] is a supervised classifica-
tion task, where semantic labels are assigned to audio streams ac-
cording to the environments they represent. These environments
could be indoor, outdoor, or a moving vehicle. Applications of ASC
can be in context-aware and intelligent wearable devices, hearing-
aids, robotic navigation systems, surveillance, and audio archiving
systems.

With application point of view, it is required that the machine
listening algorithms be such that they are able to work with differ-
ent types of audio, that is, speech, music, as well as environmental
sounds. In the systems presented in this report, we use some spectral
features from audio processing fields. The motivation behind using
these features, specifically, mel-frequency based features, was to be
able to discriminate between acoustic scenes in a way similar to the
human auditory system by the exploiting the spectral characteris-
tics of the typical audio events that characterize the scenes. The
features for both the sub-tasks are derived from log-mel band ener-
gies (LogMBE). For sub-task A, we extract mel-frequency discrete
wavelet coefficients (MFDWC) [2, 3] by applying discrete wavelet
transform to LogMBE matrix of an audio sample. We address the
low-complexity three-class classification problem of sub-task B by
analysing texture of the LogMBE matrix with the help of local bi-
nary pattern (LBP) [4]. The classifier for both the systems is a sup-
port vector machine (SVM) with intersection kernel [5].

The rest of this report is organized as follows: In Section 2,
we give the description of the proposed system. Next, in Section 3

we elaborate on the formation of the system and the experimental
configuration. In Section 4, we present the results. It is followed by
the conclusion of the work in Section 5.

2. BASIC SYSTEM CONFIGURATION

2.1. Features
The proposed systems use the following as features.

o Mel-frequency discrete wavelet coefficients (MFDWC) [6]: In
all fields of speech processing, mel-frequency cepstral coeffi-
cients (MFCC) are the most exploited features. One of the im-
portant steps in MFCC extraction is discrete cosine transform
(DCT). Discrete wavelet transform (DWT) applied to mel-
filterbank log-energies results in MFDW coefficients. Wavelet
based features are especially efficient in characterizing the im-
pulsive parts of the audio [7]. The feature extraction scheme is
same as that of MFCC, except that the DWT replaces DCT [?].
In many speech processing applications, dynamic coefficients,
that is, discrete-time derivatives of features computed from lo-
cal frames are used as features. We observed in our experi-
ments that the first derivatives (i.e., delta or velocity features)
improved the performance for MFDWC. The addition of the
second derivatives (i.e., double-delta or acceleration features)
did not prove beneficial.

o Texture of Log mel-band energies (LogMBE) [8]: Local binary
pattern is a theoretically and computationally simple method,
most commonly used in face recognition [9]. LBP is a non-
parametric approach that uses a local patch of an image and
compares the magnitude of the pixels to assign the local pat-
tern one binary code [10]. LBP has been successfully applied
to spectrogram to get an anti-spoofing measure [8], to linear
cepstrogram [11] and MFCC matrix [12] for environmental
sound classification, and to mel-scaled filterbank energies in
lung sound classification [13]. We have observed that textu-
ral properties of LogMBE can be used for general grouping of
environmental audio as per their location type. Therefore, we
have used histograms of uniform LBP of LogMBE as features
for high-level labelling of environments, i.e. indoor, outdoor
and transportation.

2.2. Classifier

In our system, we have used SVM with intersection kernel. This
kernel uses the intersection between the features of the two classes
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Table 1: Class-wise accuracy (%) of baseline and proposed system
for sub-task A.

Classes Baseline | Proposed
Airport 45.0 55.1
Bus 62.9 55.6
Metro 53.5 57.2
Metro station 53.0 51.5
Park 71.3 73.1
Public square 449 42.1
Shopping mall 48.3 471
Street, pedestrian 28.8 37.7
Street, traffic 79.9 79.8
Tram 52.2 59.7
Average 544 55.0

as a measure of similarity [5]. Since SVM is a binary classifier,
in order to determine a decision criterion for multi-class ASC, we
have combined multiple SVMs following one-versus-one approach.
Thus, for N classes, N(N — 1)/2 classifiers are made, where each
one trains on data from two classes.

3. PROPOSED SYSTEM

The proposed systems follow a basic pattern classification frame-
work. This involves feature extraction after pre-processing of raw
data, followed by classifier modeling with the training data, and
finally classification by supplying test data features to the trained
model. In both the systems, the required features are extracted from
windowed frames of pre-emphasized audio. These vectors are used
to train the SVM corresponding to each feature. In the present chal-
lenge, the development data is pre-divided into one train and one
test partition. It should be noted that some part of development data
was neither used in train nor in test fold. The data for testing comes
from the evaluation dataset and follows a path similar to that of de-
velopment. However, in this case whole development data is used
for training the SVMs.

3.1. Experimental Framework

For both the sub-tasks, the classification is performed by a single-
feature single-classifier system. We have used the the development
dataset of TAU Urban Acoustic Scenes 2020 Mobile (TAUUAS20-
MD) for sub-task A and 3-class (TAUUAS19-3CD) for sub-task
B [14] in our experiments. All the audio signals for sub-task A
and sub-task B were framed by Hamming window of 40 ms and
20ms, respectively, with 50% overlap after pre-emphasis by a fac-
tor of 0.97. The filterbank used for MFDWC features in sub-task A
had 180 filters while 60 filters were chosen for LogMBE extraction
in sub-task B. Haar function was used as the mother wavelet for
MFDWC extraction. Delta (A) features, evaluated with a 3-frame
window, were appended only for this feature. For low-complexity
ASC, histogram of uniform LBP analysis was given as input to
SVM classifier with intersection (INT) kernel. Frame-wise mean
and standard deviation of the features were used for 10-class classi-
fication with the same SVM configuration.
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Table 2: Device-wise accuracy (%) of baseline and proposed system
for Sub-task A.

Device | Baseline | Proposed
A 68.8 69.4
B 60.2 59.0
C 59.9 65.1
S1 50.3 55.8
S2 50.0 50.9
S3 50.9 58.2
S4 452 46.7
S5 44.8 473
S6 34.8 43.0
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Figure 1: Confusion matrix of results of proposed MFDWC-SVM-
INT system with TAU Urban Acoustic Scenes 2020 Mobile devel-
opment dataset (sub-task A).

4. RESULTS

In the present challenge, class-wise mean accuracy is used as the
metric. The mean accuracy of all classes reported for the openL.3-
DNN baseline system [15] for sub-task A is 54.1%. Thus, by ob-
taining a mean class-wise accuracy of 55.0%, our proposed system
has outperformed the deep-learning based baseline with the devel-
opment dataset of sub-task A. Class-wise performance comparison
of the two systems for this sub-task is depicted in Table 1. The
proposed system’s results are also pictorially represented in Fig. 1.
The two systems show almost equivalent accuracy for classes other
than ‘airport’, ‘bus’, ‘street_pedestrian’ and ‘tram’. Both systems’
worst performance is on the ‘street_pedestrian’ class, although the
proposed system is comparatively better. The proposed system clas-
sified the scenes from ‘airport’ and ‘tram’ classes far better than the
baseline system.

From the task description of DCASE 2020’s sub-task A, “This
task targets generalization properties of systems across a number of
different devices, and will use audio data recorded and simulated
with a variety of devices”. The data was recorded with three de-
vices (A, B and C) and simulated with six devices (S1-S9). The
comparative performance of the baseline and the proposed system
with respect to the devices is given in Table 2. The proposed system
has shown better performance for devices C, S1, S3 and S6.

The sub-task B’s baseline system is similar to DCASE2019’s
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Table 3: Class-wise accuracy (%) of baseline and proposed system
for sub-task B.

Classes Baseline | Proposed
Indoor 82.0 86.7
Outdoor 88.5 90.5
Transportation 91.5 92.8
Average 87.3 90.0
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Figure 2: Confusion matrix of results of proposed LogMBE-LBP-
SVM-INT system with TAU Urban Acoustic Scenes 2020 3-Class
development dataset (sub-task B).

Task 1 baseline. The LogMBE-CNN based system has reported
a 3-class accuracy of 87.3%. The proposed LBP-LogMBE-SVM
based system has outperformed it with 90.0% accuracy. The class-
wise comparison of the two systems is presented in Table 3. It can
be seen that the proposed system’s classification of scenes of the
three classes is better than that of the baseline system, especially
for ‘indoor’ class. It can be observed from Fig. 2, which shows the
confusion matrix for the proposed system, that there is a consider-
able confusion between scenes from ‘indoor’ and ‘outdoor’ envi-
ronments.

5. CONCLUSION

In this technical report, we have described a system for acous-
tic scene classification task (Task 1, sub-task A and sub-task B)
of DCASE challenge 2020. The first sub-task is concerned with
problem of ASC with multiple recording devices. On the other
hand, sub-task B addresses a low-complexity application,in which
all available data (development and evaluation) are recorded with
the same device but the scenes are grouped into three high-level
classes of indoor, outdoor and transportation. Our systems used
well-known audio processing features along with SVM as classifier
to produce classification better than the baseline systems for both
the sub-tasks.
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