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ABSTRACT

This technical report describes our submission for Task 1B of
DCASE2020 challenge. The objective of task 1B is to construct
an acoustic scene classification (ASC) system with low model com-
plexity. In our ASC system, the average-difference time-frequency
features are extracted from binaural audio waveforms. A random
search policy is used to find the best-performing CNN architec-
ture while satisfying the requirement of model size. The search is
limited to several predefined efficient convolutional modules based
on depth-wise convolution and swish activation function to con-
strain the size of search space. Experimental results on development
dataset shows that CNN model obtained by this search strategy has
higher accuracy compared to an AlexNet-like CNN benchmark.

Index Terms— Acoustic scene classification, convolutional
neural network, neural architecture search, depthwise convolution,
swish

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of classifying
recorded audio signal into one of predefined acoustic environment
classes. It has been one of the major task in IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) since 2013. This technical report describes the details
of our submission for Task 1B of DCASE 2020. The task requires
a light-weight acoustic scene classifier to determine input audio as
one of the three scene classes: indoor, outdoor and transportation.
The model size of the classifier is required to be less than 500KB.

Neural Architecture Search (NAS) is a technique for automat-
ing the design of deep neural networks (DNN). NAS has been
widely investigated and applied to computer vision. Because the
search space of DNN architectures could be tremendously large
which makes exhaustive search impossible, many searching strate-
gies were proposed to better explore the search space. For example,
MetaQNN [1] is an NAS algorithm based on Q-learning to auto-
matically generate high-performing CNN architectures. In [2], a
recurrent neural network (RNN) is used to generate the network
architecture descriptions. The RNN is trained with reinforcement
learning to maximize the expected performance of the generated
architectures on validation dataset. To further accelerate NAS, ef-
ficient NAS [3] with parameter sharing was proposed to discover
network architectures by searching for an optimal subgraph within
a predefined large computational graph. Single-path NAS [4] fur-
ther reduces the search space from multi-path to single-path. On

the other hand, it was reported that a random architecture selection
policy may possibly have similar performance with the NAS algo-
rithms. [5] The success of NAS shows that automatically searched
model architectures could do better than manually tuned ones.

In this study, scalogram features are extracted from binaural
acoustic scene signals. The average-difference representation of
scalogram features is used as the input feature of the ASC system.
We propose a simple yet effective random search policy to find high-
performing light-weight model. The search space of model archi-
tectures is constrained to 2 - 4 convolutional blocks, with each block
having 1-2 convolutional modules and one pooling layer. The con-
volutional modules include depth-wise separable convolution and
inverted residual, with the ReLU activation function replaced by
Swish. Experimental results on development dataset shows that
CNN model obtained by this search strategy has higher performance
compared to the AlexNet-like CNN benchmark.

2. FEATURE DESIGN

2.1. Wavelet-Based Filter-Bank Features

Previous studies showed that wavelet-based filter-bank (scalogram)
features performed better than log-mel features in ASC task [6, 7].
We follow the same setting as described in [6] to extract the scalo-
gram features. Compared to log-mel features with the same number
of frequency bins, the extracted scalogram features have higher fre-
quency resolution in low frequencies.

2.2. Average-Difference Representation

Task 1B of DCASE 2020 deals with binaural audios. Compared to
monaural audio, binaural audio contains spatial information about
the sounds in the scene. For example, we can hear a car passing
by from our left side to the right side in binaural audio, while this
is not possible with monaural audio. To utilize spatial information
for ASC, scalogram features Sleft and Sright are computed from
the left channel and right channel of the input audio. Their average
Savg and their difference Sdiff are obtained as:

Savg = Sleft + Sright, (1)

Sdiff = Sleft − Sright. (2)

The input of our ASC system Sin is given by the concatenation
of Savg and Sdiff .
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3. EFFICIENT CONVOLUTIONAL MODULES

To develop an ASC system with low model complexity, we use
depth-wise and point-wise convolution to construct the classifier
model. The depth-wise separable convolution (DSC) is the core
module of MobileNet V1 [8], which is an efficient CNN designed
for mobile vision applications. DSC includes a depth-wise convo-
lution and a point-wise convolution. The depth-wise convolution
applies a single filter to each input channel. The point-wise convo-
lution is a 1 × 1 convolution to combine the output of depth-wise
convolution.

Inverted residual with linear bottleneck is another efficient
module that is found as the basic building block of MobileNet V2
[9]. It takes a low-dimensional input, expands the feature to high-
dimension, and then apply filtering by depth-wise convolution. Sub-
sequently it projects the feature back to low-dimensional represen-
tation using point-wise convolution. After the final point-wise con-
volution, no non-linear activation function is applied, and this ex-
plains the name of linear bottleneck. Besides, the module contains
a shortcut connection between input and output.

We consider both DSC and inverted residual (with linear bottle-
neck) in ASC system design. Instead of using the original formu-
lation, we replace the ReLU activation function with Swish. Swish
significantly improves the accuracy of neural networks as compared
to ReLU for various applications [10]. Denoting the input as x, the
Swish function is defined as:

Swish(x) = x · sigmoid(βx), (3)

where β can be a constant or trainable parameter. For simplicity we
set β = 1.

Figure 1 shows the two types of convolution modules used in
our experiments. For a convolution layer, the input variable “inp”
refers to the number of input channels and “out” refers to the num-
ber of output channels of this module. The inverted residual module
has an expansion ratio of 3, which is smaller than the typical ratio 6
used in the original MobileNet V2. The stride of convolution layers
is 1 and the kernel size of depth-wise convolution is either 3× 3 or
5× 5.

4. SEARCHING FOR NETWORK ARCHITECTURES

4.1. Network Architectures

The search space of network architecture is constrained to convo-
lutional networks. The input is the average-difference scalogram
feature of audio segment of size (2, 128, 128). The first layer of
the network is fixed as a standard 3 × 3 convolution layer called
stem convolution layer. After the stem convolution layer is 2 - 4
convolutional blocks. We define a convolutional block as a stack-
ing of convolutional module(s) and a pooling layer. A block may
contain one or two convolutional modules(s) and one pooling layer.
Then a global average pooling layer follows. The output layer is
a fully connected layer with the output dimension of 3, represent-
ing the output probabilities of the 3 acoustic scene classes. Notice
that probabilities for an audio file are the average of its segments’
probabilities. Figure 2 shows an example of the model in the search
space.

4.2. Search Space

We search for CNN models which meet the model architecture defi-
nition in Section 4.1. To reduce the search space, we limit the types

Depth-wise Conv (inp, inp)

BatchNorm

Swish

Point-wise Conv (inp, out)

BatchNorm

Swish

Point-wise Conv (inp, 3*inp)

BatchNorm

Swish

Depth-wise Conv (3*inp, 3*inp)

BatchNorm

Swish

Point-wise Conv (3*inp, out)

BatchNorm

Figure 1: The two types of convolutional modules used for net-
work architecture sampling. Left: Depth-wise separable convolu-
tion module; right: inverted residual with linear bottleneck with
expansion ratio 3. The swish activation function is used instead of
ReLU.

Table 1: List of modules that can be selected to build a model ar-
chitecture.

id Module description

0 Identity Mapping
1 3× 3 DSC module
2 5× 5 DSC module
3 3× 3 Inverted Residual module
4 5× 5 Inverted Residual module

of modules in convolutional blocks to 5. The modules are shown
as in Table 1. Identity mapping means the input is identical to the
output. Modules with id 1 and 2 are DSC modules described in
Section 3, with kernel size being 3 × 3 and 5 × 5. Likewise, mod-
ules with id 3 and 4 are inverted residual (with linear bottleneck)
modules described in Section 3. For the pooling layer, either 2× 2
average pooling or 2× 2 max pooling can be selected.

The details of our search space are shown in Table 2. The “Stem
conv. output filters” specify the number of output filters in the stem
convolution layer. “Growth ratio of filter number” controls the in-
crement of filter number after each convolutional block. For exam-
ple, given the number of output filters of stem convolution layer as
32, a growth ratio of 1.5 means the number of channels after the first
block is 32 × 1.5 = 48, after the second block is 48 × 1.5 = 72,
and so on. When sampling a model architecture from the search
space, for each configuration item, every possible choice has equal
probability of being chosen.

4.3. Search Scheme

With the search space defined, we use the following search scheme
to find the high-performing architectures. First, a candidate model
architecture is randomly sampled from the search space. Then its
model size is checked. If the model size is too small (e.g., smaller
than 250 KB) or too large (larger than 500 KB), we discard this can-
didate architecture. If the model size requirement is satisfied, we
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Figure 2: Illustration of a model in the search space. It has 4 con-
volutional blocks. The 3rd block contains a 5× 5 DSC module and
an average pooling layer.

Table 2: The search space of CNN architectures.

Model Configuration Possible Choice

Number of blocks 2,3,4
Stem conv. output filters 4 - 128

Growth ratio of filter number 1.0,1.25,1.50,1.75,2.0

Block 1 module A id 0,1,2,3,4
Block 1 module B id 1,2,3,4
Block 1 pooling layer Avg. Pool, Max Pool

Block 2 module A id 0,1,2,3,4
Block 2 module B id 1,2,3,4
Block 2 pooling layer Avg. Pool, Max Pool

...

train the candidate model for only 3 epochs. The small number of
training epochs are empirically set to constrain the time consump-
tion of our search scheme, which is inspired by the early stopping
strategy in NAS as described in [11]. The trained candidate model
together with its accuracy on validation set and validation loss will
be saved. After a considerable number of candidate models being
found, we pick the model architecture with highest validation set ac-
curacy or lowest validation loss to train from scratch with sufficient
training epochs (� 3).

5. EXPERIMENTS

5.1. Data Preprocessing

The TAU Urban Acoustic Scenes 2020 3Class development dataset
[12] is used for model training and testing. For each 10-second bin-
aural audio signal in the dataset, we compute the scalogram feature
for each channel. To extract the scalogram feature, STFT is ap-
plied on audio waveform with 2048 FFT points, window length of
25 ms and hop length of 10 ms. Wavelet filter-bank is applied on
the logarithm magnitude of the STFT result to obtain the scalogram
features. The resulted scalogram feature has the shape (1000, 128)
where 1000 is the number of time frames and 128 is the number of

frequency bins. Then we compute the average and difference of the
scalogram features as described in 2.2. Finally, features are cut into
non-overlapping segments of 128 time frames. Notice that we use
the Python library Kymatio [13] to generate wavelet filters using
support size of 2048, maximum scale of the filters being 1024 and
number of wavelets per octave Q = 16. As a result, the total number
of filters in the wavelet filter-bank is 128.

5.2. Optimization

For training the candidate model, we use initial learning rate of
0.001, and the learning rate is multiplied with 0.1 after each epoch.
The number of training epochs is 3. The model is trained with bi-
nary cross-entropy loss with Adam optimizer [14] (β1 = 0.9 and
β2 = 0.999). Weight decay with coefficient 0.0015 is used for
regularization purpose. Mixup [15] approach is used for data aug-
mentation. After the final best-performing model is determined, the
best model is trained from scratch for challenge submission. In this
case, the number of training epochs is 60. Learning rate is multi-
plied with 0.5 after every 4 epochs.

5.3. Results and Discussion

Figure 3 shows the accuracies of candidate models (trained for 3
epochs) which satisfy the model size requirement. It can be seen
that the accuracies of most candidate models are in the range of
92% - 94%. Besides, we observe that models having highest ac-
curacy not necessarily have lowest validation loss given 3 training
epochs. Thus, we picked two model architectures for challenge sub-
mission: model A has the highest validation set accuracy and model
B has the lowest validation loss. Their architectures are shown in
Table 3. After training them from scratch with 60 epochs, model A
has an accuracy of 95.6% and model B has an accuracy of 95.8%.
Notice that model B has a constant number of filters in each con-
volution layer (growth ratio of filter number being 1.0). It is quite
counter-intuitive because for typical CNNs, the number of filters
will increase after each convolutional block.

To have a grasp of how well the light-weight models perform,
we also manually designed and trained an AlexNet-like model with
large model size (33.8 MB). It is trained for 40 epochs and achieves
an accuracy of 95.5%. Notice that the found light-weight model A
has an accuracy of 95.6% (trained from scratch with 40 epochs for
comparison), which is better than the AlexNet-like model. It should
be noted that the model size of the model A is only 434.8 KB, which
is approximately 1/80 of the size of the AlexNet-like model.

6. SYSTEM SUBMISSION

We submit 4 systems to the DCASE2020 task1B challenge. The
first system (Wu CUHK task1b 1) uses the model B trained on the
entire development dataset with 60 epochs. The second system
(Wu CUHK task1b 2) averages the model prediction from model
A and model B. Likewise, the third system (Wu CUHK task1b 3)
averages the model predictions from 3 independently trained model
B.

The fourth system (Wu CUHK task1b 4) averages the model
predictions from 2 models: one model B trained with average-
difference scalogram features, and another model B trained with de-
composed scalogram features (only the medium-duration and short-
duration components are used). To obtain the decomposed scalo-
gram features, we average the scalogram features from the left and
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Table 3: Architectures of light-weight models with highest valida-
tion accuracy (model A) and lowest validation loss (model B) given
3 training epochs. “IRwLB” means the inverted residual with linear
bottleneck module. “DSC” means the depthwise separable convo-
lution module. For each layer, the number inside “()” is the number
of output filters.

Model A Model B

1 3× 3 Stem Conv. (76) 3× 3 Stem Conv. (64)

2 3× 3 IRwLB (76) 3× 3 IRwLB (64)
3 3× 3 DSC (133) 2× 2 AvgPool
4 2× 2 AvgPool 3× 3 DSC (64)
5 5× 5 DSC (133) 2× 2 AvgPool
6 5× 5 DSC (232) 5× 5 DSC (64)
7 2× 2 MaxPool 3× 3 DSC (64)
8 2× 2 AvgPool
9 3× 3 IRwLB (64)
10 3× 3 DSC (64)
11 2× 2 AvgPool

12 GlobalAvgPool GlobalAvgPool
13 Fully Connected Fully Connected
14 10-way Softmax 10-way Softmax

Figure 3: The candidate models’ accuracy on validation set and
their model sizes. Each dot represents a candidate model.

right channel. Then the decomposition method described in [6] is
applied with two median filters (kernel sizes being 201 and 11).
Concatenation of Smedium and Sshort is used as the input features.
The purpose of using different input features is to introduce more
diversity in the ensemble system.

For the second, third and fourth system, to satisfy the model
size requirement, the model parameters and input features are con-
verted to 16-bit float numbers (originally they are 32-bit float). Ta-
ble 4 shows the size and performance of the systems on develop-
ment dataset.
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