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ABSTRACT

The DCASE2020 Challenge Task2 is to develop an unsuper-
vised detection system of anomalous sounds for six types of
machine. In this paper, we proposed two methods. One is to use
auditory traditional features and dictionary learning (DL) to train
a dictionary. Another is to use auditory spectral features and
deep learning method to train an autoencoder (AE). Both of our
proposed methods achieve an improvement comparing to the
baseline system, and better performance can be obtained by
using the mixture of two methods. Experiments prove the practi-
cability of the proposed methods for anomaly detection.

Index Terms— Unsupervised anomaly detection, Auditory
traditional features, Dictionary learning, Log Mel-filter bank,
Autoencoder

1. INTRODUCTION

Anomaly detection in sound (ADS) has received much attention.
Since abnormal sounds may indicate symptoms of errors or
malicious activity, timely detection of them can prevent such
problems. In particular, ADS has been used for a variety of
purposes, including audio surveillance [1], animal husbandry [2],
product inspection and predictive maintenance [3].

Unsupervised ADS [4], [5] is to detect unknown anomalous
sounds under the condition that has not been observed. Since
actual abnormal sounds rarely occur and have high variability,
in this paper, we aim to detect unknown abnormal sounds based
on unsupervised methods. We proposed two different methods to
perform ADS tasks based on dictionary learning [6], [7] and
autoencoder [8], [9], respectively, and obtain the best results of
them.

The remainder of paper is organized as follows. In section 2,
we present about proposed dictionary learning method. In sec-
tion 3, we present about proposed autoencoder method. The
experimental results are discussed in section 4. Finally, conclu-
sions are given in section 5.

2. DICTIONARY LEARNING METHOD

As shown in Figure 1, the system developed mainly contains
three parts: feature extraction, dictionary learning and one-class
SVM classifier [10]. We first use normal audio in training set to

Figure 1: Framework of the proposed system.

train a dictionary and a classifier, then predict on the testing set
according to the trained model. Details of each part are discussed
below.

2.1. Feature Selection

Traditional features of auditory signals are used in the dictionary
learning based system. Since audio signals contain noise, espe-
cially our signal-to-noise ratio of audio signals is low, deep
network only uses the features of the data distribution level
which is not easy to distinguish normal and abnormal sounds.
Traditional features contain fault information, which is more
conducive to learning the distribution related to abnormalities,
thereby improving the classification accuracy. In addition, tradi-
tional features have good stability, considering the generalization
of the system.

Setting the length of sample window to 1024 points, hop
size to 512 points, each audio in the dataset divided into more
than 300 frames, then the traditional features are calculated for
each frame and get a 16-dimensional feature which are normal-
ized before the dictionary learning. Table 1 shows the 16 fea-
tures we selected.

Table 1: the name and definition of selected traditional features
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Note:�t�h presents the absolute value, N presents the number
of samples, �=(1:N/2)*�h/N，�h presents the sampling frequen-
cy, S( � ) presents the frequency spectrum of vibration signal
during sampling time.

2.2. Dictionary Learning

As the audio feature inputs, a set of over-complete bases [11] is
used, hence, an approximate representation of the original audio
segment can be obtained (i.e. Y≈DX) under the condition of
satisfying a certain sparsity or reconstruction error T0. This
representation problem can be described as:

t��
�t�

�� t ����
� ththt ��t����� � ��, (1)

The goal of dictionary learning is to minimize the recon-
struction error and make the coefficient matrix as sparse as
possible to obtain a more concise representation of the signal and
reduce the complexity of the model.

For the audio feature Y which has been framed, we random-
ly sample 5 percent of the frame feature as training data to par-
ticipate in dictionary training due to the limitation of RAM. In
sparse representation stage, OMP algorithm [12] is used to ob-
tain the coefficient matrix of the corresponding dictionary. K-
SVD algorithm [13] is used in training dictionary phase. Until
the algorithm converges, the joint optimization of dictionary and
matrix is finally completed. Using the trained dictionary, the
sparse representation coefficient matrix X' of the input sample Y'

within the reconstruction error of 10-7 can be obtained.

2.3. Outlier Detection

After the dictionary created, the sparse representation coefficient
matrix of the input normal sample in training set is used to train
a one-class SVM classifier. The classifier can study the distribu-
tion of the inputs and can be used as a discriminator in testing
phase. If the input is similar to the training data, it will output 1,
otherwise, it will output -1.

Here, the deviation between a normal model and an ob-
served sound is calculated, the deviation is often called the
“anomaly score”. Two different scoring methods are set to get it.
For the first approach percentage scoring is used, an audio is
divided into more than 300 frames. After each frame is predicted
by the classifier, a label of 1 or -1 will be obtained. The score is
determined by calculating the proportion of -1 labels in all
frames. For the second approach continuous scoring is used, the
label of each frame obtained by the above method, then traverse
the labels of these consecutive frames. If we encounter -1, we
get 1 point. If the next label is still -1, then the score of the next
label is 2. If continue continuously, the score of the next label is
4. And so on, until you encounter 1. Then when -1 is encoun-
tered again, repeat the previous process. This scoring method
can be described as:

Score ᆘ t� � ��� , (2)
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Through the above method, we get the audio anomaly score
S, the higher the score, the greater the possibility of abnormal.
The observed sound xτ is identified as an anomalous one when
the anomaly score is higher than a pre-defined threshold value Φ.
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2.4. Post-processing

We set different kernel type and an upper bound for all machine
in one-class SVM classifier training phase. For different types of
machine, we try 4 types kernel and set upper bound range from 0
to 1 to find most robust parameters.

To evaluate the performance of our method, the post-
processing step translates the anomaly scores into AUC and
pAUC. The AUC is a traditional performance measure of anom-
aly detection. The pAUC is an AUC calculated with FPRs rang-
ing from 0 to p with respect to the maximum value of 1.

3. AUTOENCODER METHOD

As shown in Figure 3, the autoencoder system developed mainly
contains three parts: feature extraction, autoencoder and scoring
part. Normal audio in training set is used to train an autoencoder,
then reconstruct all audio in testing set according to the trained
model. Details of each part are discussed below.
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Figure 2: Framework of the proposed system.

3.1. Feature Selection

Spectral features of auditory signals are used in the autoencoder
based system. Setting the length of sample window to 64ms,
hop size to 32ms, number of filters to 128 and maximum fre-
quency to 8000 Hz to get log mel-filter banks, each audio is
divided into more than 300 frames with 128-dimensional which
are standardized before training.

3.2. Autoencoder

The purpose of using autoencoder is to learn representation of
the input features by using two neural networks E and D, which
are called the encoder and decoder, respectively.

For the audio feature x which has been framed, the encoder
network E convert x into a latent feature z, then the audio feature
x is reconstructed from z by decoder network D. We obtain a
reconstructed feature x' through autoencoder.

In this paper, we modify the structure of autoencoder in
baseline system, the encoder consists of one input FCN layer, 2
hidden FCN layers, and one output FCN layer. The hidden units
are set to 64, 32, 16 and 8, respectively, considering the relation-
ship between the amount of training data and the total amount of
parameters in training phase. The decoder structure is corre-
sponding to the encoder.

3.3. Outlier Detection

In training phrase, we use extracted features of normal audio in
training set to train autoencoder. Since autoencoder is trained to
learn representation of normal feature, in testing phrase, the
reconstruction error would be small if x is normal. Thus, we use
reconstruction error as anomaly score, the score is defined as

h㌳䁉�� ᆘ � t �����hh �
�, (4)

Through the above method, we get the audio anomaly score,
the higher the score, the greater the possibility of abnormal. A
pre-defined threshold value Φ is used to identify anomalous
audio as illustrated in (3). We also use the post-processing step
mentioned in sec 2.4 to get AUC and pAUC.

4. EXPERIMENTAL RESULTS

In this part, we discuss the performance of the proposed methods
and compare to the DCASE 2020 task2 baseline system[14],
[15], [16]. We compare average performance for six types of
machine and performance for every machine using two proposed
methods to obtain the best results.

Table 2: Average AUC of the baseline, dictionary learning (DL)
and autoencoder (AE) method for six types of machine

Machine Baseline (%) DL (%) AE (%)
fan 65.83 72.55 70.62
pump 72.89 67.46 76.40
slider 84.76 79.49 82.00
valve 66.28 72.33 60.22
toycar 78.77 49.25 80.23

toyconveyor 72.53 53.67 71.75

Table 3: AUC of the baseline, dictionary learning (DL) and
autoencoder (AE) method for all machine

Machine Id Baseline (%) DL (%) AE (%)

fan

0 54.41 69.07 55.53
2 73.40 72.00 81.04
4 61.61 82.24 59.87
6 73.92 66.88 86.03

pump

0 67.15 82.90 67.03
2 61.53 83.90 65.73
4 88.33 53.03 98.06
6 74.55 50.00 74.78

slider

0 96.19 96.93 93.34
2 78.97 68.63 77.28
4 94.30 86.21 92.39
6 69.59 66.17 61.78

valve

0 68.76 54.00 59.66
2 68.18 87.90 63.66
4 74.30 82.90 68.03
6 53.90 64.50 49.55

toycar

1 81.36 50.00 77.80
2 85.97 47.00 84.03
3 63.30 50.00 69.55
4 84.45 47.00 89.64

toyconveyor
1 78.07 53.00 80.74
2 64.16 54.00 64.76
3 75.35 53.00 69.75

4.1. Dictionary Learning Results

Setting different kernel type and an upper bound for all machine.
We compare the method of percentage scoring and continuous
scoring for different types of machine and choose the better one
for them. Then we obtain the AUC for all machine.

The comparation of average performance is shown in Table
2. For the machine type of fan and valve, the average perfor-
mance achieves a significant increment in AUC from 65.83,
66.28 to 72.55 and 72.33, respectively. For other machine types,
the average performance exhibited a litter bit worse AUC than
the baseline.

In Table 3, we compare the performance for all machine.
For most machine, the performance improves a lot. Especially,
the performance of fan4, pump2 and valve2 improved about
20% compared with the baseline. Although average performance
for the machine type of pump and slider exhibited a litter bit
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worse, some separate machines such as pump0, pump2 and
slider0 have better performance than baseline system. However,
same as average performance, toycar and toyconveyor become
worse.

4.2. Autoencoder Results

After training autoencoder used normal audio in training set,
anomaly score obtained for all audio in testing set. Then the
anomaly score translated to AUC to evaluate the performance.

The comparation of average performance is shown in Table
2. For the machine type of fan, pump and toycar, the average
performance achieves an increment in AUC. For other machine
types, the average performance exhibited a litter bit worse AUC
than the baseline.

In Table 3, we compare the performance for all machine.
For most machine, the performance improves a lot. Although
average performance for the machine type of toyconveyor exhib-
ited a litter bit worse, toyconveyor1 have better performance
than baseline system. Same as average performance, slider and
valve become worse.

4.3. Experiments Summary

According to the AUC results shown in Table 2 and Table 3,
both of our proposed methods outperform the baseline for most
machine. Using the mixture of two methods to perform DCASE
task2 can obtain better performance shown in Table 4. For fan
and pump, the two proposed methods are complementary, using
DL for fan0, fan4, pump0 and pump4, using AE for the remain-
ing machine will obtain best performance. For toycar and toy-
conveyor, the performance of using AE is better than DL. For
valve, DL obtain a high performance. For slider, we get a litter
worse performance than baseline, AE is finally used considering
the generalization of the system.

Table 4: Average AUC of the baseline and mixture system for six
types of machine

Machine Baseline (%) Mixture (%)
fan 65.83 79.60
pump 72.89 84.91
slider 84.76 82.00
valve 66.28 72.33
toycar 78.77 80.23

toyconveyor 72.53 71.75

5. CONCLUSION

In this work, we proposed two methods for task2 of DCASE
2020 challenge. Overall, both of our proposed methods outper-
form the baseline system among most machine. According to the
AUC results on development set, only use one method of them is
not sufficient to perform well in this task, so the final system is a
mixed approach.

To further improve the system, future work can be done by
1) training the model on additional datasets to set most suitable
kernel type and an upper bound for all machine. 2) modify the
structure of autoencoder to get better performance. 3) select suit-
able super frame for both methods.
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