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ABSTRACT

This study uses nearest neighbour distance as a measure of
anomaly. The nearest neighbour distance is defined as the distance
from a test sample to its nearest neighbour in the training dataset,
which contains only sounds recorded in normal condition. A sam-
ple is represented by a multi-variate Gaussian distribution of corre-
sponding MFCCs. Kullback-Leibler divergence is used to measure
the dissimilarity between two distributions, and it is further used as a
distance between two samples. Three submissions vary in the use of
MFCC deltas and the type of covariance matrices used for Gaussian
distributions.
Index Terms: Anomaly detection, nearest neighbour, KL diver-
gence

1. INTRODUCTION

Anomalous sound detection aims at identifying anomaly in target
machine based on the sounds emitted. The manual monitoring of
industrial machines could be time-consuming. Computational audio
content analysis enables almost effortless monitoring of industrial
machines. In addition, the accuracy of the computational analysis
might be better than human, since human auditory system is not well
trained to perform this type of task.

Previously, several studies have been made using autoencoders
to perform anomalous sound detection such as [1]. However,
the evaluation on these methods have been limited to small scale
datasets. Lately two datasets [2, 3] are released specifically for the
purpose of anomalous sound detection study. These datasets are used
in the challenge of unsupervised detection of anomalous sounds for
machine condition monitoring [4], based on which this study is con-
ducted.

In this study, the anomaly detection problem is understood as
a variation of retrieval problem, whether a similar recording can be
found in the corpus of normal condition recordings. A recording
is considered as anomaly, if no similar recording can be found. To
the best of our knowledge: three methods have been used to mea-
sure the similarities between audio pairs: KL divergence between
feature distributions, dynamic time warping (DTW) between feature
sequences and cosine similarities between embedding vectors. In
order to choose the proper similarity metric, a manual analysis has
been made on the datasets. As the first observation, the recordings
are rather long (10 seconds) and the feature sequence order is not
important to most of the device types. Due to the large computa-
tion cost, DTW is excluded in this study. As the second observation,
the anomaly can hardly be detected by human, who has no prior
knowledge about the devices. Based on this observation, the lit-
tle general knowledge learned from large datasets such as Audioset
can be transferred to this problem. As a negative effect, the em-
beddings extracted with a model learned from general sound event

detection dataset may discard information that is important to the de-
vice anomaly but irrelevant to sound event detection. As a summary
of the analysis, KL divergence between feature distributions is the
most suitable choice as the similarity metric.

2. THE PROPOSED METHOD

The proposed method measures the dissimilarity, or distance, be-
tween each test sample and training sample pair. The anomaly score
of a test sample is determined by its distance to the nearest sample
in the training set. The dissimilarity between two sounds is mea-
sured based on KL divergence between the mel-frequency cepstral
coefficients (MFCCs) distribution in the two sounds.

2.1. MFCC extraction

The extraction of MFCCs is as follows. The frame length is 200
ms and the hop length is 50 ms. Given the sampling rate is 16 000
Hz, the frame length and hop length is 3200 samples and 800 sam-
ples, respectively. A relative long frame length is used, since sounds
produced by the industrial machines change slowly over time. The
number of mel-bands is 256. MFCCs of 40 coefficients are used
besides the first and second order deltas. The deltas of a frame is
computed based on the next four frames and past four frames. Both
the MFCCs and their deltas are extracted using librosa.

2.2. Sound segment representation

A sound segment, or an audio file in a dataset, is represented by
a multi-variate Gaussian distribution as Pi = N (µi,Σi), based
on the mean and covariance of the MFCCs in the segment. The
MFCCs within a segment i of n frames are denoted as Xi =
xi,1,xi,2, ...xi,n. The mean of MFCCs is denoted as

µi =

∑n
j=1 xi,j

n
. (1)

Two different types of covariance matrices are used in submissions.
The first one uses diagonal covariance matrices, using the variance
of each variable as diagonal values, computed as

Σi = diag(σi) = diag(

∑n
j=1(xi,j − µi)

2

n
). (2)

This assumes the variables independent to each other. The other one
uses directly the covariance matrix as

Σi =
(Xi − µi)(Xi − µi)

T

n
. (3)



2.3. Segment-to-segment dissimilarity measurement

KL divergence is a measurement of dissimilarity between two dis-
tributions. In this work, it is used to determine the distance between
a a sound segment pair. The sound similarity metric has been used
in sound information retrieval [5] and clustering-based active learing
[6].

The KL divergence between two multi-variate Gaussian distri-
butions P0 and P1 is calculated as

DKL(P0‖P1) =
1

2
(tr(Σ−1

1 Σ0)

+ (µ1 − µ0)>Σ−1
1 (µ1 − µ0)

+ ln(
det Σ1

det Σ0
)− k),

(4)

where µ0 and Σ0 are mean and covariance of distribution P0, re-
spectively. The mean and covariance of distribution P1 are denoted
as µ1 and Σ1.

KL divergence is not a commutative operation so that
DKL(P0‖P1) is different from DKL(P1‖P0). In order to obtain a
symmetric dissimilarity matrix, the average of both way KL diver-
gence is used to measure the dissimilarity between two segments i
and j as

di,j =
DKL(Pi‖Pj) +DKL(Pi‖Pj)

2
. (5)

2.4. Variation in submissions

The submission 1 as the default setup uses the same setup for all
the devices. It uses MFCCs, deltas and second order deltas. The
Gaussian distribution is based on diagonal covariance matrices.

In submission 2 and submission 3, the devices are divided into
two groups: stationary sound machines, which produce mostly sta-
tionary sound; transient sound machines, which produce important
signature transient sounds. The stationary sound machine group in-
cludes fan, pump, toy car and toy conveyor. The transient sound
machine group includes slider and valve. The deltas are more likely
to be affected by environmental noise, compared to stationary sound
machines. Thus the deltas are excluded in submission 2 and submis-
sion 3 for stationary sound machines. Diagonal covariance matrix
assums independence in variables. MFCCs are decorrelated with
discrete time transform. However, the distribution of deltas could be
dependent to the static MFCCs. Taking this into account, full covari-
ance matrices are used for the transient sound machines in submis-
sion 3.

2.5. Anomaly score

The distances based on KL divergence are measured between each
test sample and each training sample. The nearest distance from a
test sample to any of the training samples is used as the anomaly
score of the test sample. The anomaly score of a test sample i is thus
computed as

si = max(di,j |j ∈ T ), (6)
where T is the trainind set.

3. EVALUATION

The evaluation in this technical report is based on only the develop-
ment dataset, since the evaluation set is not released by the time of
writting.

Sub. 1 Sub. 2 Sub. 3
Deltas(stationary) Yes No No
Deltas(transient) Yes Yes Yes

Covariance(stationary) Diagonal Diagonal Diagonal
Covariance(transient) Diagonal Diagonal Full

Table 1. Setups in the three submissions. Fan, ToyCar, ToyConveyor
and pump belong to the stationary group. Slider and valve belong to
the transient group.

3.1. Experimental setup

The three submissions use the same basic setups following the meth-
ods described in the method section. Three variables are tested, the
number of MFCCs, the use of MFCC deltas and the type of covari-
ance matrices. The setups in the three submissions are shown in
Tables 1. Notably, the first submission uses exactly the same setup
for all the machine types.

3.2. Results

The experimental results on each machine type is shown in Tables 2.
Comparing the results on stationary sound machines between sub-
mission 1 and submission 2, it is slightly better to use only static
MFCCs for stationary sound devices except pump. In the manual
analysis, pump seems to produce some transient sounds, but it does
not have a clear pattern. From this perspective, it is hard to determine
which group it belongs. Comparing the results on transient sound
machines between submission 1 and submission 3, it is clearly bet-
ter to use full covariance Gaussian distribution for MFCCs and their
deltas.
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