
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

MULTI-RESOLUTION MEAN TEACHER FOR DCASE 2020 TASK 4
Technical Report

Diego de Benito-Gorron, Sergio Segovia, Daniel Ramos, Doroteo T. Toledano

AUDIAS Research Group
Universidad Autónoma de Madrid

Calle Francisco Tomás y Valiente, 11, 28049 Madrid, SPAIN
diego.benito@uam.es, sergio.segoviag@estudiante.uam.es, daniel.ramos@uam.es, doroteo.torre@uam.es

ABSTRACT

In this technical report, we describe our participation in DCASE
2020 Task 4: Sound event detection and separation in domestic en-
vironments. A multi-resolution feature extraction approach is pro-
posed, aiming to take advantage of the different lengths and spec-
tral characteristics of each target category. The combination of up
to five different time-frequency resolutions via model fusion is able
to outperform the baseline results. In addition, we propose class-
specific thresholds for the F1-score metric, further improving the
results over the Validation set.

Index Terms— DCASE 2020, CRNN, Mean Teacher, Multi-
resolution, Model fusion, Threshold tuning, PSDS

1. INTRODUCTION

This paper describes our submission to DCASE 2020 Task 4. Our
participation is based on the provided baseline system and follows
the scenario of sound event detection without source separation
pre-processing. This baseline is a convolutional recurrent neural
network (CRNN) trained using the Mean Teacher algorithm [1].
We propose a multi-resolution analysis of the audio features (mel-
spectrograms) used to train the neural network, in contrast with
the single-resolution approach of the baseline. Additionally, class-
specific thresholds for the F1-score metric are proposed, replacing
the default global value of 0.5.

2. DATASET

The dataset used for sound event detection in DCASE 2020 Task
4 is DESED (Domestic Environment Sound Event Detection) [2,
3]. DESED is composed of real and synthetic recordings. Real
recordings include the Weakly-labeled training set (1578 clips), the
Unlabeled training set (14412 clips), the Validation set (1168 clips)
and the Public Evaluation set (692 clips). Synthetic recordings have
been generated using the Scaper library [4] and the provided JAMS
file, obtaining a Synthetic training set with 2536 strongly-labeled
clips.

The Weakly-labeled, Unlabeled and Synthetic training sets are
used to train the neural networks. 20% of the Synthetic training set
is reserved for validation. The DESED Validation set is used to tune
hyper-parameters and perform model selection.

Work developed under project DSForSec (RTI2018-098091-B-I00),
funded by the Ministry of Science, Innovation and Universities of Spain
and FEDER

N. Mean Std.
Alarm bell / ringing 587 1.10 1.43
Blender 370 2.36 2.04
Cat 731 1.11 0.81
Dishes 1123 0.61 0.49
Dog 824 0.92 0.93
Electric shaver / toothbrush 345 4.61 2.69
Frying 229 5.06 3.07
Running water 270 3.81 2.53
Speech 2760 1.13 0.82
Vacuum cleaner 343 5.87 3.28

Table 1: Number of examples and mean and standard deviation of
their durations (in seconds) for each sound category in the Synthetic
training set.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

The DCASE 2020 Task 4 challenge consists in the detection and
classification of 10 different sound events. These sound events dif-
fer in duration and spectral characteristics. One of the hypotheses
we wanted to explore with our participation in the DCASE 2020
Task 4 challenge is whether a multi-resolution feature extraction
approach could provide improvements in this context.

Most systems developed for previous similar evaluations, and
also the baseline system provided for this challenge, rely on a mel-
spectrogram which essentially transforms the audio into a 2-D im-
age that is later analyzed using a deep neural network. The compu-
tation of the mel-spectrogram depends on several parameters (such
as the sampling frequency used for the audio, the number of points
of the FFT, the type and length of the analysis window and the num-
ber of mel filters) which essentially define a single time-frequency
resolution working point.

A particular point in time-frequency resolution can be more or
less appropriate to detect a specific type of sound event depending
on its characteristics, particularly of its length and spectral distribu-
tion. In this evaluation the different types of sound events to detect
have different lengths and spectral characteristics. For instance, it
is particularly easy to show that the different sounds have different
lengths by analyzing the mean and standard deviation of the dura-
tion of the 10 different types of sounds in the Synthetic training set.
This information is presented in Table 1.

Given that the different sound events to detect and classify
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have so different lengths, it seems plausible that using several
time-frequency working points in the feature extraction stage could
improve sound detection and classification results. In previous
experiments [5], we achieved modest improvements using multi-
resolution analysis in a problem (automatic speech recognition)
where the differences in the lengths and spectral characteristics of
the sounds (all of them human voice phones) were much smaller.

To explore this possibility we have used several mel-
spectrogram computations using different parameters to use sev-
eral (up to 5) different time-frequency resolution working points.
Our approach is based on the baseline provided by the organization.
We have replicated the baseline several times, modifying each in-
stance to handle a different time-resolution working point. Finally,
we have fused the frame-level estimation of the class posteriors pro-
vided by each subsystem.

To define the different time-frequency resolution working
points we have taken as a reference the point defined by the base-
line and have defined other points by increasing and decreasing the
time and frequency resolution. In this way, we have defined 5 time-
frequency resolution working points. All of them share in common
with the baseline the use of a sampling frequency of fS = 16000
Hz. and the use of a Hamming window. The rest of the parameters
(FFT length, window length, window hop and number of mel filters)
are modified to increase time or frequency resolution as described
below for each time-frequency resolution working point.

1. BS (baseline). The baseline uses an analysis window of
length L = 128 ms. which makes it difficult to accu-
rately detect events smaller in time than the window length
(L = 128 ms.). On the other hand, the frequency resolu-
tion is limited by the width of the main lobe of the Hamming
window, 8π/(L − 1) = 8π/2047 rad/sample, which corre-
sponds to a frequency resolution of 4/2047 × 16000 ≈ 31
Hz. Therefore it will be difficult to detect changes in fre-
quency closer than that. This frequency resolution is later
limited in a non-linear way by the use of the Mel filterbank
with 128 filters. The specific parameters used by the baseline
are the following.

− FFT length: N = 2048 samples.
− Window length: L = 128 ms. (L = 2048 samples).
− Window hop: R = 15.94 ms. (R = 255 samples).
− Number of Mel filters: 128.

2. T++ (twice better time resolution). We halve the analysis
window to a length of L = 64 ms., which makes it possible
to detect shorter events as small as the new window length
(L = 64 ms.). On the other hand, the frequency resolution
decreases to 4/1023× 16000 ≈ 62.5 Hz. We also halve the
number of Mel filters.

− FFT length: N = 1024 samples.
− Window length: L = 64 ms. (L = 1024 samples).
− Window hop: R = 8 ms. (R = 128 samples).
− Number of Mel filters: 64.

3. F++ (twice better frequency resolution). We double the anal-
ysis window length to L = 256 ms. This makes it difficult to
detect events smaller than the new window length (L = 256
ms.). On the other hand, we get a much better frequency
resolution of 4/4095 × 16000 ≈ 15.5 Hz. To keep this in-
creased frequency resolution we double the number of Mel
filters.

− FFT length: N = 4096 samples.

− Window length: L = 256 ms. (L = 4096 samples).

− Window hop: R = 32 ms. (R = 512 samples).

− Number of Mel filters: 256.

4. T+ (intermediate point between BS and T++). Analysis win-
dow of length L = 96 ms. and frequency resolution of
4/1536 × 16000 ≈ 41.7 Hz. Also an intermediate num-
ber of Mel filters is used.

− FFT length: N = 2048 samples.

− Window length: L = 96 ms. (L = 1536 samples).

− Window hop: R = 12 ms. (R = 192 samples).

− Number of Mel filters: 96.

5. F+ (intermediate point between BS and F++). Analysis win-
dow of length L = 192 ms. and frequency resolution of
4/3072× 16000 ≈ 21 Hz. Also an intermediate number of
Mel filters is used.

− FFT length: N = 4096 samples.

− Window length: L = 192 ms. (L = 3072 samples).

− Window hop: R = 24 ms. (R = 384 samples).

− Number of Mel filters: 192.

3.2. Model fusion

Fusion has been performed considering that, for each event, a two-
class classification task is performed independently of the other
events. Thus, for a given event i, classification between classes
{θi,0; θi,1} is performed, where θi,0 means “event i not detected”
and θi,1 means “event i detected”. Alternatively, we will call this
two-class classification task a detection task.

For each detection task i, with classes {θi,0, θi,1}, a different
score is generated by each of the CRNN detectors involved, as a
time series with a given time resolution. Thus, a final score si must
be computed for each event in this unit of time, in order to make de-
cisions, by means of the fusion of all the individual scores from all
the individual detectors, namely (s

(1)
i , ..., s

(K)
i ). We perform this

fusion as a late integration, before score binarization and median
filtering. By convention, the lower a score, the stronger the support
to θi,0, and the higher a score, the stronger the support to θi,1. If we
haveK different detectors, the final score is obtained as the average
of the scores in this way:

si =
1

K

K∑
j=1

s
(j)
i (1)

The interpretation of the scores of each of the detectors is as
follows. Each of the scores is taken from the output of one of the de-
tectors, a CRNN trained with a cross-entropy criterion. Therefore,
the output of the jth CRNN can be interpreted as two probabilities,
namely P (j)(θi,1|x) and P (j)(θi,0|x) = 1 − P (j)(θi,0|x), where
x is the audio observation at this particular moment in time. We
compute each of the scores of the detectors in the following way:

s
(j)
i = logit(P (θi,1|x)) ≡ log

P (j)(θi,1|x)
1− P (j)(θi,1|x)

(2)

The inverse of the logit operator is the well-known sigmoid
function.
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Moreover, logit(P (j)(θi,1|x)) is decomposed as follows:

logit(P (θi,1|x)) = logit(P (θi,1)) + log
P (j)(x|θi,1)
P (j)(x|θi,0)

(3)

where P (θi,1) is the prior probability of detection; and the likeli-

hood ratio P (j)(x|θi,1)
P (j)(x|θi,0)

is the actual information about detection of
an event as extracted by the jth detector CRNN. Therefore, an av-
erage fusion has the following interpretation in probabilistic terms:

si = P (θi,1) +
1

K

K∑
j=1

log
P (j)(x|θi,1)
P (j)(x|θi,0)

(4)

Thus, the average fusion is equivalent to average the informa-
tion extracted by all the K detectors for each event, by keeping
unaltered the prior probabilities.

It is worth saying that the prior probability of detection of each
event, P (θi,1), is either computed from the training/validation set,
or given by the evaluation rules somehow. In this evaluation, how-
ever, these prior probabilities are not specified for the testing eval-
uation set. Moreover, the empirical prior probabilities of detection
vary from the training, validation and other datasets given in the
evaluation, and there is not an indication of whether the prior prob-
abilities will be the same in the evaluation test set as in the train-
ing/validation sets or not. That makes impossible to compute the
prior probabilities of detection. This will have consequences in the
decision-making stage, as described below.

3.3. F1-score threshold tuning

If the posterior class probabilities P (θi,1|x) are properly computed
(i.e., calibrated), the decisions to be made in order to optimize the
expected cost in a Bayesian scenario are trivial to obtain, according
to Bayes decision rule. However, given that in the evaluation the
prior probabilities of the evaluation test set are not given, and are
not possible to compute reliably, the task of making a decision is
pointless, since the prior information is not known, and a decision
threshold cannot be set in any sound way. For the same reasons,
setting a prior of 0.5 in this scenario is also pointless and unsound,
since we do not know how to optimize the threshold to achieve a
minimum expected cost, as the prior probabilities are not known.

Moreover, it is well known that the F1-score and the minimum
of the Bayes decision rule have different operating points. There-
fore, optimizing the threshold for each of the event detection tasks
to achieve minimum expected cost is pointless, since the criterion
to be optimized is the F1-score.

In order to overcome these problems, we have tuned different
thresholds to the different events for each fused score si in order
to optimize the F1-score of each event. We have done this empir-
ically, by experimenting in the validation set. Results are shown
below. However, even tuning thresholds for the validation set does
not guarantee good decisions, since the prior probabilities of the
evaluation test set can vary, and there is no way to predict in which
way.

Because of the reasons above, it is worth saying that we believe
that this situation of not knowing the prior probabilities makes the
task to lose relevance, as long as the empirical priors of the testing
set are not specified. Making decisions to optimize expected costs
or precision-recall-based measures as F1-scores, as a task, is not
properly defined unless the empirical priors in the evaluation test set

are known, or predictable in some way. Thus, it might happen that
extremely well-performing detectors fail to obtain a good F1-score
just because they are not properly designed for the 0.5 threshold.
As the optimal thresholds strongly depends on the empirical prior,
measuring primary performance by F1-score without prior specifi-
cation leads to potentially misleading overall evaluation results, in
our opinion.

4. EXPERIMENTS AND RESULTS

Our experiments are based upon the baseline system1 released by
the DCASE Team. The general structure of the CRNN and the
training parameters are kept, while the resolution parameters for
feature extraction are changed as described in 3.1. The pooling lay-
ers of the convolutional stage of the network had to be adapted to
the number of mel-filters used in each resolution point so that the
input dimension to the recurrent stage is consistent.

The reported F1-scores are event-based and computed with
a 200 ms collar on onsets and a 200 ms or 20% of the events
length collar on offsets. Additionally, the Polyphonic Sound De-
tection Score (PSDS) [6] results of the submitted systems are pre-
sented. The baseline system achieves 34.8% event-based F1-score
and 0.610 PSDS over the DESED Validation set.

4.1. Single-resolution results

Table 2 shows the event-based F1-score results for the DESED Val-
idation set obtained with each of the feature resolution points de-
scribed in 3.1. For each resolution point, five systems have been
trained with different random initializations of the network. The
mean and the standard deviation of the obtained F1-scores are re-
ported.

4.2. Multi-resolution results

In order to include multi-resolution information in the sound event
detection system, networks trained with different feature resolutions
have been combined following the procedure described in 3.2.

Table 4 shows event-based F1 results for several model com-
binations. Combining models trained with different feature resolu-
tions provides a larger improvement. In the case of the 3res system,
38.7% macro F1 is obtained by combining resolutions T++, BS
and F++. The combination of the five proposed resolution points
(5res) reaches a macro-F1 of 40.9% over the Validation set.

The F1 results can be further improved by adjusting the bina-
rization thresholds to their optimal values as described in 3.3, reach-
ing 43.4% macro-F1 (5res-thr), which is our best result over the
Validation set. The thresholds used by this system are listed in Ta-
ble 3.

The PSDS performances of the described model combinations
are presented in Table 5. Figure 1 shows the three PSDS curves of
the 5res model over the Validation set. It should be noted that vary-
ing the F1-score operation point does not affect the PSDS computa-
tion, therefore the PSDS results of the 5res-thr model are identical
to those of the 5res model.

5. CONCLUSIONS

In this paper we described our participation in DCASE 2020 Task
4, which follows the scenario of SED without source separation.

1https://github.com/turpaultn/dcase20 task4
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T++ T+ BS F+ F++

Alarm bell / ringing 42.1 ± 1.5 43.8 ± 2.1 42.0 ± 1.4 42.2 ± 3.1 41.0 ± 2.0
Blender 32.9 ± 3.2 32.3 ± 1.4 27.4 ± 1.6 30.0 ± 2.6 30.9 ± 3.9
Cat 38.4 ± 1.8 40.0 ± 1.8 41.0 ± 2.1 39.3 ± 3.9 34.7 ± 2.3
Dishes 20.8 ± 1.5 21.9 ± 1.1 20.8 ± 2.1 22.6 ± 1.7 21.0 ± 1.2
Dog 15.1 ± 0.7 17.1 ± 2.6 16.5 ± 1.0 12.3 ± 1.1 12.8 ± 2.7
Electric shaver / toothbrush 32.8 ± 4.2 35.5 ± 4.7 37.2 ± 2.9 36.2 ± 5.4 41.1 ± 2.9
Frying 23.5 ± 2.2 23.9 ± 2.3 20.9 ± 4.8 23.9 ± 2.2 22.2 ± 2.6
Running water 31.7 ± 3.3 29.8 ± 2.2 30.4 ± 2.6 27.6 ± 1.8 27.2 ± 1.6
Speech 42.7 ± 3.1 47.1 ± 2.9 45.2 ± 1.5 46.2 ± 2.6 46.3 ± 1.8
Vacuum cleaner 40.1 ± 1.7 39.9 ± 2.3 38.9 ± 3.3 44.5 ± 4.1 40.1 ± 5.0
Total macro 32.0 ± 1.3 33.1 ± 0.9 32.0 ± 1.1 32.5 ± 1.5 31.7 ± 1.0

Table 2: Event-based F1-score (%) over the Validation set for each event category obtained with different time-frequency resolution working
points. Mean ± standard deviation computed across 5 trainings with random initializations.

Figure 1: PSDS (left), PSDS cross-trigger (center) and PSDS macro (right) curves for the 5-resolution system computed over the Validation
set.

Threshold
Alarm bell / ringing 0.31
Blender 0.49
Cat 0.65
Dishes 0.31
Dog 0.69
Electric shaver / toothbrush 0.61
Frying 0.29
Running water 0.45
Speech 0.83
Vacuum cleaner 0.65

Table 3: Binarization thresholds used in the 5res-thr system.

Our system builds on the baseline provided by the organization,
implementing three main improvements: multi-resolution analysis,
model fusion and threshold tuning.

The baseline system achieved 34.8% event-based F1-score and
0.610 PSDS over the DESED Validation set. The improvement
obtained using model fusion was larger when combining models
trained with different time-frequency resolutions, reaching 40.9%
event-based F1 and 0.666 PSDS when combining five resolution
points. Furthermore, we explored the possibility of choosing a dif-
ferent binarization threshold for each event category, obtaining an
additional improvement in F1 of 2.5 points (43.4%).

Base 5×BS 3res 5res 5res-thr
A. bell/ringing - 45.0 46.1 47.2 48.2
Blender - 38.3 46.4 49.5 50.0
Cat - 42.0 42.2 45.2 47.3
Dishes - 23.2 22.1 23.9 25.2
Dog - 19.6 17.7 18.6 22.3
E. shaver/toothb. - 41.6 41.8 46.8 49.0
Frying - 26.7 30.0 29.7 34.3
Running water - 36.9 38.2 39.6 41.6
Speech - 47.6 48.0 49.9 55.6
Vacuum cleaner - 47.7 54.8 58.7 61.0
Total macro 34.8 36.9 38.7 40.9 43.4

Table 4: Event-based F1-score (%) results of combined models over
the Validation set. The Base column references the Baseline System
results as reported by the organizers.

αct αst Base 5×BS 3res 5res
PSDS 0 0 0.610 0.635 0.657 0.666
PSDS cr-tr. 1 0 0.524 0.564 0.595 0.609
PSDS macro 0 1 0.433 0.451 0.467 0.479

Table 5: PSDS, PSDS cross-trigger and PSDS macro results of
combined models over the Validation set. αct is the weight related
to the cost of cross-trigger. αst is the weight related to the cost of
instability across classes. The Base column references the Baseline
System results as reported by the organizers.
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