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ABSTRACT

This report presents deep learning and data augmentation tech-
niques used by a system entered into the Few-Shot Bioacoustic
Event Detection for the DCASE2021 Challenge. The remit was to
develop a few-shot learning system for animal (mammal and bird)
vocalisations. Participants were tasked with developing a method
that can extract information from five exemplar vocalisations, or
shots, of mammals or birds and detect and classify sounds in field
recordings. In the system described in this report, prototypical net-
works are used to learn a metric space, from which classification
is performed by computing the distance of a query point to class
prototypes, classifying based on shortest distance. We describe the
architecture of this network, feature extraction methods, and data
augmentation performed on the given dataset and compare our work
to the challenge’s baseline networks.

Index Terms— Few-shot Learning, Prototypical Networks,
Data Augmentation, SED, Activity Detection

1. INTRODUCTION

Few-shot learning has emerged as a promising tool for sound event
detection, and is particularly relevant for bioacoustics applications.
Few-shot learning systems must generalise to new classes unseen
during training, given only a few labelled instances of each class.
This makes them highly suitable to tasks such as the monitoring of
animal populations through their vocalisations, where the data for a
dedicated classifier may be costly to annotate, and may lose some
generalisation.

In the DCASE 2021 Few-shot Bioacoustic Event Detection
challenge, participants are asked to provide the onset and offset
times of events in a given audio file, given 5 labelled examples of the
class of interest. Four separate data sets are provided for training,
with a further two for validation. The training set comprises of 14
hours, 20 minutes and contains 19 separate classes, and 4686 events.
These classes include bird species, hyenas, and meerkats. The vali-
dation set contains 5 hours of audio, 4 classes and 310 events. There
is no overlap between these two development sets. Further details
are provided in [1] and [2]. Evaluation Data contains only the first
5 positive events for each file, with the aim to use the system to
predict all other positive events [3].

Prototypical networks can be applied to a few-shot learning
problem such as the task proposed in the challenge. They are con-
sidered a model based approach to the problem of few-shot learning

by Wang et al [4], which aims to reduce to constrain the hypothe-
sis space using prior knowledge. This is achieved by learning a
non-linear mapping between inputs and a metric/embedding space.
Class support points should then be sufficiently separated from each
other and a prototype representation of the classes constructed [5].
This prototype is constructed as the mean of the support set (which
are the labelled instances of the new unseen data to be classified).
Classification of each query point is done by finding its nearest class
prototype according to some distance function dφ(x,x

′), typically
the distance function employed is Euclidean distance.

In this regard, prototypical networks are similar to clustering
algorithms and nearest neighbour classification in particular, where
the prototype representations of each class are the neighbours to the
query point. The efficiency and simplicity in these networks makes
them an appealing approach to the problem posed in this challenge.

2. IMPLEMENTATION DETAILS

As mentioned in both Section 1 and the challenge description, few-
shot learning is a novel task. Several methods have emerged as
solutions to the task, such as matching networks, however we felt
prototypical networks offered the most promising approach to the
problem. As such, we propose in this section a modified version
of the baseline Prototypical Network, implementing a modified net-
work architecture, as well as data augmentation to supplement train-
ing data and validation data.

2.1. Data Preparation

All audio files in both the development and evaluation sets are first
resampled to a sampling rate of 22050Hz and normalised prior to
their transformation into Mel spectrograms. We do not apply any
band pass filtering to the audio signals due to the variety of species
in the available datasets. Future work could apply a custom filter
to each dataset based on the typical frequency ranges present, but
as this network is designed to generalise to new, unseen classes, we
decided against implementing this for this submission. Each audio
file is transformed to a Mel spectrogram, with 128 Mel bins, an FFT
size of 1024 samples and a hop of 256 samples. This is the same
configuration present in the baseline system.

We also preform Per-Channel Energy Normalisation (PCEN)
on the spectrograms (proposed as method of improving robustness
to channel distortion in keyword spotting tasks [6]), in order to both
reduce noise in the spectrogram and provide normalisation, gain
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control and compression the file. PCEN has been proposed as an
alternative logarithmic scaling of the Mel spectrograms [7]. PCEN
does reduce the noise present in the spectrogram, but non-stationary
sources of noise still pose an issue and can contaminate features. In
our experiments, we tested our systems using both log-Mel spectro-
grams and PCEN Mel spectrograms.

2.2. Data Augmentation

To increase the model performance and create an embedding space
that can generalise to loss of information, temporal/frequency shift
and new classes, we apply various data augmentation techniques
to the resulting spectrogram representations. These data augmenta-
tions are based upon work in [8] and [9]. These augmentations are
achieved using pyTorch’s Audio toolset, Torchaudio, which uses the
methods specified in [8].

• Time stretching - We apply a time stretch to each spectrogram,
both shortening and lengthening of the spectrogram without
any change in pitch info. This translates to a warping along
the horizontal axis of the spectrogram according to a specified
factor. In our system we have chosen a stretching factor of 5%,
corresponding to two augmented spectrograms at effectively
0.95x and 1.05x the playback speed of the original audio file.

• Time masking - Time masking is applied such that T con-
secutive time steps are masked, with all frequency information
set to 0 within that interval. The interval is randomly chosen
from a uniform distribution, as per Torchaudios implementa-
tion. Due to the considerable length of each file in the data
set, this is applied to each 10s chunk of audio, before being
reconstructed prior to dataset construction.

• Frequency masking - Frequency masking performs a similar
augmentation on the vertical, or frequency axis of the spectro-
gram. Again this is applied in chunks of 10s so as to increase
the variability in augmented data.

Examples of these augmentations, and the PCEN front-end, are
seen in Figure 1. Note, that while we show both time masking and
frequency masking in the one spectrogram to save space, we did not
perform this augmentation on the data itself.

These augmentations create more data to train and validate the
model during development. After augmentation, the validation and
evaluation data is transformed into the appropriate dataset form,
comprising of positive data points to construct the positive class
prototype, negative data points to construct the negative class proto-
type, and all remaining data to be query points. To prevent class im-
balance when training, Random Over Sampling is employed. This
is necessary as there is a severe skew in the class distribution of
the data, with the majority of occurrences belonging to the negative
class.

2.3. Model Architecture

The submitted model architecture is similar to that proposed in the
baseline, we have modified the encoder to a less deep model, only
using 3 ConvBlocks in place of the 4 in the baseline. Each layer
grouping is made up of a Conv2D layer, Batch Normalisation, a
ReLU activation layer, and followed by a 2D Max Pooling layer,
with pool-size (2, 2). Table 1 details the resulting architecture and
the ConvBlock sub-block.

Table 1: Architecture of ConvBlock layer and Encoder Architecture

ConvBlock Architecture

Sub-Layer 1 Conv2D
Sub-Layer 2 BatchNorm
Sub-Layer 3 ReLU
Sub-Layer 4 MaxPool2D((2,2))

Encoder Architecture

Layer 1 ConvBlock 128
Layer 2 ConvBlock 128
Layer 3 ConvBlock 128
Layer 4 Flatten

2.4. Training

Training of the prototypical network involves minimisation of the
negative log-probability of a point to its true class, achieved us-
ing the Stochastic Gradient Descent (SGD) algorithm with an initial
learning rate of 0.01 and a momentum factor of 0.85. Learning rate
is scheduled to halve when a plateau is reached, with a patience of
5 epochs and a threshold of 0.01. In our experiments this provided
the best environment for training. All our models are trained using
150 epochs, however the best performing model had minimum loss
at epoch 126. As we are using additional augmented data, train-
ing time can be increased without risk of over-fitting to the training
data.

Training is performed in episodic batches using a custom
episodic batch sampling function, easily added to the pyTorch
framework. Each episode is randomly generated from the avail-
able data, creating a randomised support and query set. Prototypes
are computed from the support samples and loss on query points is
calculated as per Equation 1.

J ← J+
1

NCNQ

[
d(fφ(x), ck) + log

∑
k′

e−d(fφ(x),ck′ )
]

(1)

Where,
d(·)→ Euclidean distance function
fφ → embedding of query set
ck → class prototype for class k
NC , NQ → number of classes and query points

In Figure 2 we have provided the average validation loss during
training of a model trained on Mel spectrograms using log-scaling
and no augmentation, Mel spectrograms using log-scaling and data
augmentation, and finally Mel spectrograms using PCEN and data
augmentation. Models using augmented features take longer to train
than those which do not, and the usage of PCEN further increases
the time necessary for the model to converge on a minimum. Al-
though models using augmented data and PCEN do not achieve
lower loss than the original data using log-Mel spectrograms, as
seen in Section 3 this does not lead to worse results, in fact they do
perform better on this task.
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Figure 1: Example spectrograms on a 10s clip from the JD subset, (1) Log-Mel Spectrogram, (2) PCEN Front-end, (3) Time warping by
20%, (4) Mixture of time and frequency masking. PCEN representations when converted to an image, are more difficult to see than log scaled
spectrograms, therefore we have decided to present the augmentations using log-scaled spectrograms.

Figure 2: Average validation loss for system with log-Mel spectro-
grams, augmentation, and PCEN + augmentation.

2.5. Evaluation & Post-Processing

Evaluation of the model involves calculating the probability of
whether a query point belongs to the positive class, achieved by
taking the softmax of the distances between query points and the
two class prototypes as in Equation 2.

pi(y = ck|x) =
exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), ck′))

(2)

p is the set of probabilities for each iteration (Equation 3). Five

iterations of this operation are performed, after which the average of
the probabilities is taken. The chosen class is the one with the high-
est mean probability over all iterations as per Equation 4. Thresh-
olding of probabilities is set to 0.5, although this could be tuned
depending on application, and whether recall or precision is valued
more.

p = {p1 , ..., pi} (3)

Pφ(y = ck|x) = E
[
p
]

(4)

For a given file, this results in a classification of each segment as
either positive or negative. To prevent abrupt transitions where the
classifier may have incorrectly classified a segment in the middle of
a vocalisation, median filtering with a window length of 5 samples
is applied. Edge detection is performed using a 1D edge detection
kernel, convoluted with the classification results at the output of the
median filtering stage (Equations 5 and 6) to determine the points
where onset the onset and offset of an event occurred. The output
of this convolution contains the value 1 at the index of onset, and
−1 at the index of offset.

k[n] = [1,−1], edge detection kernel (5)
(y ∗ k)[n] = y[n]− y[n− 1] (6)

Onset and offset times may then be calculated and written to a
CSV file. These onset and offset times are further post-processed
using a method proposed by the baseline, where any positive in-
stances that are shorter than 60% the length of the shortest positive
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Table 2: Table of results on validation set.
Model F-Meas. (%) Pre. Rec.

Baseline Reproduction 30.437 0.456 0.228
Log Mel Spectrograms 16.565 0.108 0.355

Data Aug. 20.517 0.143 0.360
Data Aug. + PCEN 26.243 0.200 0.381

Table 3: Results by validation data subset.
Data Sub-Set F-Meas. (%) Pre. Rec.

PB 22.222 0.201 0.249
HV 32.039 0.199 0.825

labelled instance, are dropped from the final results. Evaluation of
results with and without this post-processing step show that it re-
duces the amount of false positive events with little change in the
amount of true positives registered. Results of experimentation with
the minimum allowed event length vary by file, and may warrant fu-
ture investigation.

3. RESULTS

Performance is evaluated on the validation data, provided in the de-
velopment set released as part of the challenge. We utilise the eval-
uation method provided by the challenge organisers, which creates
a confusion matrix for each file, and calculates precision, recall, and
the F-measure.

Given the similarity of our system to that of the baseline, we
decided to reproduce the baseline prototypical methods results for
comparison with ours. Unfortunately, we could not replicate the
results stated in the challenge, achieving at most an F-measure of
30.437%.

In Table 2, we summarise the results on the validation data pro-
vided in the development set on the baseline, and three progressive
iterations of our system (Log-Mel spectrogram, Log-Mel Spectro-
gram with augmentation, Mel spectrogram with PCEN and aug-
mentation).

The best performing model utilises both PCEN on the front-
end, and data augmentation to give our best result of 26.243% on
the F-measure metric. Breakdown of results by each subset pro-
vided for validation can be seen in Table 3.

4. DISCUSSION

The model architecture we have chosen is similar to that of the base-
line, however we have applied various data augmentation methods
to the training data to increase model robustness.

Our aim of improving on the baseline results has not been met,
as our F-measure is ≈ 4.2% below that of our reproduced baseline.
We have made significant improvements to recall, our system is ca-
pable of recognising 38% of calls in the validation set, but this has
come at the cost of precision, as we have many false positives in
our predictions. Future work to improve this may focus on the post
processing applied to the data after initial inference. We may also
employ deeper models in the future, as there is the possibility that
the learned embedding space does not separate the two classes well
enough, with suppor points not being sufficiently far away from
each other.

Improvement was mostly gained through the usage of PCEN
over the more traditional approach of log-scaling the Mel spectro-
gram, lending evidence to the claim in [7] that PCEN can signifi-
cantly outperform log-Mel scaling when used on noisy data, with
no significant increase in computational complexity. Our methods
of data augmentation also improved on our initial log-Mel spectro-
gram model, and was further improved by the addition of PCEN.
Other methods of data augmentation (such as additional noise from
other files, piece-wise frequency stretching, etc.), and augmentation
of support points for evaluation should also be investigated. In-
terestingly, although the average validation loss of models trained
using data augmentation was greater than that of the log-Mel spec-
trograms, their performance when evaluating the validation set was
greater. We also found that they could be trained for longer, reach-
ing a minimum less quickly than the original log-based features
without augmentation or PCEN.

To conclude, our results of our system show that few-shot learn-
ing for bioacoustics applications with prototypical networks is still
a novel and challenging task which is in its infancy, but one which
can rapidly improve going forward.
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