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ABSTRACT

This technical describes our approaches for the DCASE 2021 Chal-
lenge Task 2. Our approaches are based on deep metric learning
using sub-cluster AdaCos loss and outlier detection using GMM
and One-Class SVM. To tackle the difficulties of domain shift con-
ditions, first we trained our model with only source domain data,
and then, fine-tuned with source and target domain data.

We achieved an averaged area under the curve (AUC) of
66.12% and averaged partial AUC (p = 0.1) of 58.18% on the test
data in development dataset.

Index Terms— Unsupervised Anomaly Detection, Deep Met-
ric Learning, Machine Condition Monitoring

1. INTRODUCTION

In this technical report, we describe our approaches for the DCASE
2021 Challenge Task 2, Unsupervised Anomalous Sound Detection
for Machine Condition Monitoring under Domain Shifted Condi-
tions [1]. The goal of this task is to determine whether the condition
of a machine is normal or anomalous from a sound emitted by the
machine using a model trained on the dataset which contains only
normal condition sound.

In this task, ToyADMOS2 [2] and MIMII DUE [3] datasets are
used. These dataset contains normal/anomalous operating sounds
of seven types of machines. The data of each machine type is di-
vided to six subsets, called sections. And for each section, sounds
recorded in source and target domains are provided.

Our approaches are based on deep metric learning using sub-
cluster AdaCos loss [4] and outlier detection using GMM and One-
Class SVM [5]. We used ResNet [6] based model to extract feature
vector from log-mel spectrogram.

2. PROPOSED APPROACH

2.1. Preprocessing

First, short-time Fourier transform (STFT) is applied using Hann
window. Window length and hop length are 1024 and 512, respec-
tively. Then, STFT spectrogram is converted to Mel spectrogram
using 128 bandpass filters. Finally, Mel spectrogram is converted
to dB scale and standardized by mean and standard deviation calcu-
lated from all training data.

Table 1: Architecture of modified ResNet

Operation Structure Output size
Input - 313× 128
Conv2D 7× 7, stride = 2 157× 64× 16

Residual block
(
3× 3
3× 3

)
× 2, stride = 1 79× 32× 16

Residual block
(
3× 3
3× 3

)
× 2, stride = 1 40× 16× 32

Residual block
(
3× 3
3× 3

)
× 2, stride = 1 20× 8× 64

Residual block
(
3× 3
3× 3

)
× 2, stride = 1 10× 4× 128

MaxPool2D 10× 1, stride = 1 1× 4× 128
Flatten - 512
Linear - 128

2.2. Feature extractor

We used modified version of ResNet [6] to extract feature vector
from each spectrogram. Model architecture is same as proposed
in [4]. Model architecture is shown in Table 1. In this model leaky
ReLU activation function [7] is used and batch normalization [8]
layer is added after each convolution layer.

2.3. Loss function

In order to reduce intra-class distance and increase inter-class dis-
tance in feature vector space, we adopted sub-cluster AdaCos [4]
cosine-based softmax loss. This loss function is modified version
of AdaCos [9], relaxing the restriction of number of clusters for
each class and allowing to use mixup [10] technique.

Let xi denotes feature vector of i-th sample in mini-batch and
Wj be sub-cluster center of class j learned by sub-cluster AdaCos,
probabilities of i-th sample belonging to class j are given by

Pi,j =
∑

l∈M(j)

exp(s · cos θi,l)∑CS
k=1 exp(s · cos θi,k)

(1)

where M(j) denotes all sub-clusters belonging to class j and
cos θi,j is calculated by cosine similarity cos θi,j = ⟨xi,Wj⟩ /
∥xi∥∥Wj∥. s is scaling factor dynamically updated during training,
and C is number of classes and S is number of sub-clusters. In this
task C = 84 and we used S = 32.
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2.4. Training strategy

The training data in development dataset in this task is highly unbal-
anced. Specifically, for each section, 1000 source domain data are
provided while only 3 target domain data are provided. To mitigate
this difficulty, we conducted training in following 2-steps:

• Step 1: Train model only with source domain data. Two source
domain data are randomly picked for each sample in mini-
batch.

• Step 2: Fine-tune model with source and target domain data.
One source domain and target domain data are randomly
picked for each sample in mini-batch.

We used mixup technique to augment training data by interpo-
lating two samples and their one-hot encoded labels. We adopted
uniform distribution for sampling mixing ratio. Since generated la-
bels are no longer one-hot encoded, we trained our entire model
with KL divergence loss between outputs of sub-cluster AdaCos
and generated labels in both Step 1 and Step 2.

2.5. Outlier detection

To detect anomalies from feature vectors, we trained outlier detec-
tion models using feature vectors extracted from training data in
development dataset.

For source domain data, we trained Gaussian Mixture Model
(GMM)s which number of components is equal to number of sub-
clusters for each combination of machine types and sections using
learned sub-cluster centers as initial mean vectors of GMM. Then,
anomaly score of each test data is calculated by largest negative
log-likelihood of all components of GMM.

For target domain data, we trained One-Class Support Vector
Machine (OCSVM)s [5] instead of GMM due to lack of samples in
training data. Anomaly scores are calculated by signed distance to
the separating hyperplane.

3. EXPERIMENTS

3.1. Training

We implemented our model using PyTorch [11] and Catalyst [12]
and trained it for 150 epochs with source domain and fine-tuned for
5000 iterations with source and target domain data. In both step we
used AdamP optimizer [13] with learning rate 0.001, weight decay
10−5, and batch-size 256. When fine-tuning our model, parameters
other than the last residual block and sub-cluster AdaCos layer are
frozen. We trained just a single model which handles all machine
types, sections, and domains.

3.2. Results

Harmonic mean of area under the curve (AUC) scores and partial
AUC (p = 0.1) scores in parentheses calculated on the test data in
development dataset are shown in Table 2. Baseline 1 and 2 means
Autoencoder-based baseline and MobileNetV2-based baseline, re-
spectively.
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