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ABSTRACT

This report describes the IDLab submissions for Task 1a of the
DCASE Challenge 2021. The challenge consists of constructing
an acoustic scene classification model with a size of less than 128
KB. All submitted systems consist of a ResNet based model en-
hanced with Squeeze-and-Excitation (SE) blocks trained with tem-
poral cropping, time domain mixup and speed-change augmentation
strategies. Grouped convolutions are incorporated in all models to
reduce the model complexity. Three submissions are based on 8-bit
quantization-aware training with a fusion of batch norm and convo-
lutional layers to reduce the parameter count even further. Further,
two of these three systems explore multi-class score calibration by
means of multinomial or one-vs-rest logistic regression. The cali-
bration is then fused with the final linear output layer of the network
to avoid an increase in model size. The fourth submission explores
parameter pruning on a model with 16-bit weights as an alternative
to the 8-bit weight quantization. The uncalibrated 8-bit model out-
performs the pruned 16-bit model slightly and achieves a log loss of
0.82 and an accuracy of 71.2% on the standard test set of the TAU
Urban Acoustic Scenes 2020 Mobile development dataset.

Index Terms— acoustic scene classification; residual neural
network; quantization; pruning; score calibration

1. INTRODUCTION

As many of the applications of Acoustic Scene Classification
(ASC) are targeting mobile hardware nowadays, there is an increas-
ingly urgent need for classification models with a limited compu-
tational complexity and memory footprint. Based on this insight,
Task 1a of the DCASE 2021 Challenge [1] consists of designing an
ASC model constrained to a storage size of 128 KB for its model
parameters. This choice to compare the systems based on the min-
imal required storage space rather than on their throughput, latency
or memory requirements enables a fair comparison of the different
systems, as this is independent of the gains that may accrue from the
specific hardware the models run on or the coding language used.

In this report, several parameter reduction techniques will be
explored to decrease the number of parameters in a RESNET-
based [2] ASC model. Apart from direct optimization by reduc-
ing the layer widths and thus the number of channels in each layer,
we apply weight quantization [3], grouped convolutions [4, 5] and
pruning [6]. We also explore prediction score post-processing that
directly optimizes the log loss criterion through logistic regression
based calibration [7, 8]. This extra calibration step does not have

an impact on the number of model parameters, as the regression
weights can be fused with the final linear layer of the ASC model.
All RESNET models are implemented with PyTorch Lightning [9],
and the logistic regression is trained with scikit-learn [10].

This report is structured in four sections. In section II the base-
line system architecture will be introduced. Section III details the
methods to transform the baseline systems into small footprint mod-
els. In section IV the configuration of the four submitted systems is
discussed, together with the corresponding results on the develop-
ment data.

2. BASELINE SYSTEM

2.1. Training setup

We use the suggested training and test partitions of the TAU Urban
Acoustic Scenes 2020 Mobile development dataset [11]. There are
13965 train audio clips and 2970 test audio clips. The dataset de-
fines 10 different acoustic scenes and 9 recording devices. The test
partition is balanced on the level of both these recording properties.

During training we optimize the cross-entropy loss with the
Adam optimizer [12]. We use a Cyclical Learning Rate (CLR)
schedule and train the model for three full cycles with the trian-
gular2 policy [13]. The maximum and minimum learning rates are
equal to 1e-3 and 1e-6, respectively. The maximum learning rate
decays with a factor of 2 after each full cycle of 120 epochs. We
also impose a weight decay value of 1e-4.

We apply on-the-fly data augmentation by taking 3 second ran-
dom temporal crops of each training recording. Each crop is resam-
pled with a rate of either 85%, 100% and 115% of the original sam-
ple frequency of 44.1 KHz with equal probability. After padding
to restore the original length of the crops, we apply Mixup [14] in
the time domain by additive mixing of the 64 crops within a mini-
batch. We set α = 0.2 in the enforced beta distribution of the
mixing weights.

2.2. Feature extraction

We use the log amplitudes of the Mel-FilterBank Energies (MFBE)
of short, overlapping signal segments as the input features. The
window size is set to 30 ms and the frame shift is 10 ms. The time-
domain data is first transformed into the Fourier domain after apply-
ing a Hann window and computing a 4096-point DFT. The DFT out-
put magnitudes for the positive frequency spectrum are then mapped
to the output of a 128-point Mel-filter bank. We apply mean nor-
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malization to the log MFBE features of each crop across time before
it is input to the neural network.

2.3. Model architecture

As Convolutional Neural Networks (CNNs) achieved promising
ASC results in the DCASE setup [11] we will focus on the proven
residual network (RESNET) [2] architecture. This is a type of CNN
that utilizes extra skip connections between the layers to speed up
the training by reducing the vanishing gradient problem. The pro-
posed architecture is shown in Figure 1. To allow for audio input of
variable duration we incorporate a pooling layer that estimates the
temporal mean and standard deviation of the input feature maps to
obtain a fixed-length representation. This representation is mapped
by a final linear layer to 10 output nodes. The activations of the out-
put nodes can be sent through a softmax layer to estimate the final
acoustic scene probabilities of the input recording.

The pre-pooling frame-level layers consist of convolutional lay-
ers. All frame-level layers except for the input layer are a Double
Conv Block which incorporates two convolutional layers with each
a kernel size of 3×3. The block is displayed in Figure 2. The stride
modifies the amount of movement when sliding the convolutional
filter across the time and frequency axis. The frequency stride has a
direct impact on the number of output statistics of the pooling layer.
The stride can thus be used to limit the number of required connec-
tions in the final linear layer. The second layer in the Double Conv
Block consists of grouped convolutions with a cardinality of 4 to
limit the number of parameters. See Section 3.2 for more details.
The convolutions operate locally with a limited receptive field in
both time and frequency space to generate the output activations. To
exploit global information as well in the frame-level layers we in-
corporate Squeeze-and-Excitation (SE) blocks [15]. These blocks
rescale the activations per channel according to information con-
tained in a global descriptor. See Figure 3 and [15] for more details.
The number of nodes in the SE bottleneck is set to 4 for the first
three Double Conv Blocks. The final three blocks use a bottleneck
size of 8 in the SE module.

All Double Conv Blocks except for the first one are bridged by
a skip connection. Due to the relatively low number of channels we
choose to include a linear projection in all skip connections. The
linear projections are also used to compensate for dimensions mis-
matches between the input and output of the Double Conv Block.
These dimension mismatches are caused by strides larger than one
and differences between the number of input channels and output
channels in the underlying convolutional layers.

The input size of the final dense layer depends on the number
of input Mel-filterbanks, the total frequency stride of the preceding
layers, the number of output channels in the final frame-level layer
and the fact that the pooling layer produces both a mean and stan-
dard deviation estimate per feature. To be more specific, for the
architecture depicted in Figure 1 we obtain an input dimension of
(128/23)×48×2 for the final dense layer that produces 10 output
activations.

2.4. Calibration

The primary evaluation metric of DCASE 2021 Task 1a is the log
loss. Neural networks can be poorly calibrated [8], which will have
a negative impact on the log loss on unseen data. In addition, we
have a mismatch between crop duration during the training phase (3
s crops) and test phase (10 s crops). In order to calibrate the output

Figure 1: The RESNET architecture used in all submission. Note
that the fourth submission with pruning reduces the channel size
from 24 (48) to 20 (40) in the Double Conv Blocks.

Figure 2: A Double Conv Block with SE-module. Note that that the
first convolution layer can apply a stride > 1. Only the final convo-
lutional layer uses grouped convolutions with a cardinality of 4.

Figure 3: A Squeeze-and-Excitation block [15] that incorporates
global information in the frame-level layers.
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scores we can train a logistic regression model [7]. We train the
logistic regression model on the acoustic scene logit output scores
extracted from the non-augmented test partition of the DCASE2020
development dataset, utilizing full length clips. This calibration step
should allow the model to produce more reliable soft decisions on
unseen data. We do not fit an intercept, and allow for different
scaling factors for all classes and scores. This results in total of
10×10 scaling factors that can be easily integrated in the final layer
of the neural network. We explore both multinomial and one-vs-rest
multiclass logistic regression to estimate the calibration parameters.
Note that the calibrated models produce optimistic scores on the test
partition of the development data, and these results may not permit
a fair comparison with other systems.

3. SMALL FOOTPRINT STRATEGIES

Several methods can be applied to reduce the total model parameter
size below 128 KB. A straightforward way of decreasing the num-
ber of parameters is to reduce the width and the depth of the neural
network. A reduction of the width corresponds with the lowering of
the number of channels in the convolutional layers. A reduction of
the depth of the network corresponds with the deletion of convolu-
tional layers.

A large proportion of the numbers of parameters in the pro-
posed architecture occurs in the final dense layer. Reducing the
number of weights in this layer will hence cause a notable reduction
in the overall amount of parameters. Applying multiple frequency
strides in the frame-level layers larger than one and/or lowering the
amount of frequency features in the input will reduce the input di-
mension of the dense layer. Note that the temporal dimension has
no impact on the model size due to the temporal statistics pooling
layer.

Three other, more advanced, methods to reduce the size of
the networks consist of weight quantization [3], grouped convolu-
tions [4, 5] and pruning [6]. See below for more details.

3.1. Quantization

Although quantization does not reduce the total number of parame-
ters, it reduces the memory required to store them by reducing the
floating point precision. Most deep learning frameworks store float-
ing point values in a 32-bit format. By applying quantization, the
model parameters can be converted into 16-bit floating points or
even 8-bit integers. A downside of this method is the inherent re-
duction in classification performance (although this degradation is
not as pronounced for 16-bit floating point numbers [16, 17]) and
the increased risk for numerical overflows.

Deploying 8-bit integer quantization can mainly be performed
in the following three ways: dynamic quantization, post-training
static quantization and quantization-aware training (QAT) [18, 3].
For 8-bit quantization we rely on QAT, as an 8-bit model trained
with QAT should be able to reach very similar classification per-
formance to that of an identical trained 32-bit model. During the
training phase, QAT operates on a 32-bit model but it mimics the 8-
bit quantization that will occur post-training. During inference the
quantized 8-bit model is used. As is common with QAT, we fuse
the convolutional operation with the Batch Norm (BN) and RELU
activation to reduce the number of parameters slightly.

32-bit floating points within a certain range and centered around

Figure 4: A grouped convolution with 4 groups (cardinality=4) [19].

a midpoint can be cast to 8-bit integers by the following conversion:

xq = round

(
xj
sq

+ zq

)
(1)

where xq denotes the 8-bit quantized value corresponding with
floating point value xj , sq is the corresponding scale and zq is the
midpoint (or zero point) of the range.

For the 8-bit quantization of the convolutional filter weights,
different scales sq are determined per channel for each filter and
these scales are stored in 64-bit floating point numbers in PyTorch.
We assume that the weights are symmetrically distributed around
zero and enforce zq for every channel to be zero. The additive op-
erations in the convolutions are performed with 32-bit precision [3]
and thus the biases of the convolutional layer are still stored in 32-
bit precision. In this approach a re-quantization step is required
after each quantized convolution layer. This requantization step re-
quires the storage of a single scale in 32-bit and a single zero point
in 64-bit. Similar quantization steps with a single scalar and zero
point are required at the start of the network, the additive operation
of all skip connections and at the end of each network module that
operated in 32-bit precision (all SE-blocks and the statistics pooling
layer).

The 8-bit quantization of the weights in the final dense layer
again requires a 64-bit scale per output channel (10 scales). zq is
again zero for every channel. The biases are stored in 32-bit. This
final layer also utilizes a re-quantization step on the output activa-
tions with a single 32-bit scale and a single 64-bit zero point.

3.2. Grouped convolutions

Grouped convolutions reduce the parameter count in the network
by dividing the input and output channels into smaller groups. A
separate smaller kernel is determined to map each input channel
group to its corresponding output channel group. This reduces the
number of required kernel weights by a factor equal to the number
of groups. This number of groups is also called the cardinality of the
grouped convolution. See Figure 4 and [19] for more details. These
grouped convolutions are used in the final convolutional layer of the
Double Conv Blocks.

3.3. Pruning

Pruning sets weights of parameters which are expected to have a
small impact on the model performance due to over-parametrization
to zero. Typically this is done for weights that have small mag-
nitudes or L1-norms. The operation can be implemented in two
ways: either weights with a magnitude below a certain threshold
are pruned or pruning is applied to a proportion of all weights [20].
The latter will be used in this report.

The non-pruned randomly initialized network is first trained for
1 CLR cycle. In between the first and second CLR cycle, unstruc-
tured L1-norm based pruning is applied the network to set a certain
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portion of the weights to zero. As this pruning decreases the accu-
racy, the network training is continued for 2 more CLR cycles to
recover.

4. SUBMISSION MODELS AND RESULTS

This section describes the different strategies used in the four sub-
mitted systems to acquire a total model parameter size below the
128 KB limit. Additionally, some systems use a separate calibration
stage based on logistic regression. The performance of all submit-
ted systems on the test fold of the DCASE development set can be
found in Table 1.

• System 1 (8-bit quantized) - qat 8b: To reduce the parameter
size of the baseline model to the requirements of the DCASE
Challenge, we apply 8-bit weight quantization combined with
QAT. All weights are quantized except for the layers in the
SE-blocks and the statics pooling layer, due to numerical insta-
bility encountered during inference.

• System 2 (8-bit quantized + multi. calib.) - 8b calibm: This
submission uses a separate calibration stage to map the out-
put scores of the baseline system to more reliable probabilities.
We use the test partition of the provided DCASE development
set to train a multinomial logistic regression classifier on the
output scores of system 1. The calibration weights are merged
with the final quantized linear layer of the model, resulting in
the same model size as the uncalibrated system.

• System 3 (8-bit quantized + OVR calibration) - 8b calibo:
Another calibration strategy is explored in this submission.
Again, we use the test partition of the development set of the
DCASE Challenge to create a calibration set based on the out-
put scores of system 1. A separate binary logistic regression
classifier is trained for each class in a one vs. rest (OVR)
fashion. Subsequently, the output logits of all classifiers are
converted to probabilities using the standard softmax function.
Note that this approach deviates from the standard OVR ap-
proach to apply a sigmoid function on the output of each clas-
sifier and to normalize the output probabilties across the dif-
ferent classes. Finally, the calibration weights are merged with
the last linear layer to prevent increasing the model size.

• System 4 (16-bit quantized + pruned) - 16b prune: The
fourth submission is a model trained using a pruning strategy
in full 32-bit precision. The model has a reduced width of 20
output channels in the initial layer and the first three Double
Conv Blocks and 40 channels in the final three Double Conv
Blocks. The model is trained for one full cycle, after which
we set 25% of the weights with the lowest magnitude to zero.
Subsequently, the model is trained further until convergence
without updating the pruned weights. After the training stage,
we quantize the parameters to 16 bit. No calibration is applied
after training.

4.1. Model complexity

System 1 - 3 use the same model and quantization strategy. Since
the extra parameters of the calibration stage are fused with the fi-
nal linear layer, this results in an equal parameter count as shown
in Table 1. Because of the 8-bit quantization these models with
a size 127.64 KB can fit 113976 non-zero parameters. The prun-
ing and 16-bit quantization strategy of System 4, which uses the

System # non-zero
parameters Log loss Accuracy (%)

System 1 114.0K 0.82 71.2
System 2∗ 114.0K (0.66) (75.3)
System 3∗ 114.0K (0.71) (74.1)
System 4 62.4K 0.84 70.2

Table 1: ASC performance of the submitted systems (<128 KB)
on the standard test fold of the TAU UrbanAcousticScenes 2020
Mobile development dataset, along with the number of non-zero
parameters. ∗ denotes that these system results cannot be used for
system comparisons due to calibration on the test set.

same baseline model architecture, fits 62390 non-zero parameters
in 121.86 KB.

4.2. Results

As shown in Table 1, the 8-bit QAT strategy results in the best per-
formance on the test fold of the DCASE 2021 development dataset
with a log loss score of 0.82. However, the pruning strategy results
in a much smaller parameter count with only a small performance
drop with a log loss score of 0.84. The reported performance of
System 2 and 3 cannot be used for system comparisons as we cali-
brated these systems on the test partition of the TAU UrbanAcoustic
Scenes 2020 Mobile development dataset.
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