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ABSTRACT 

This technical report describes our system for the subtask A 

(Low-Complexity Acoustic Scene Classification with Multiple 

Devices) of Task1 (Acoustic Scene Classification) of the 

DCASE2021 Challenge. Due to the limited space-complexity of 

the model, we choose ResNet with depthwise separable convolu-

tion as our backbone network, and introduce the attention mecha-

nism to the network. In addition, some data augmentation tech-

niques, such as Mixup, Spectrum correction, are adopted for ex-

panding the diversities of dataset. Our system achieves the accu-

racy rate of 72.4% on the development dataset, and the model size 

meets the requirement of subtask A. 

Index Terms— Acoustic scene classification, convolution 

neural network, lightweight ResNet 

1. INTRODUCTION 

Acoustic scene classification (ASC) is a task to classify each 

input audio recording into one class of pre-given acoustic scenes. 

In the dataset of Task 1 of DCASE2021 challenge [1], audio re-

cordings are recorded with three different recording devices in 12 

different cities. A relatively small number of audio recordings of 

the dataset are synthesized from the original audio recordings. In 

this report, we introduce our work on the subtask: Low-Complex-

ity Acoustic Scene Classification with Multiple Devices [2]. In this 

subtask, the ASC system should not only have good generalization 

ability and robustness, but also meet the requirements of low 

space-complexity. 

We use the depthwise separable convolution [3] as the basic 

module to build the convolutional neural network, and introduce 

the attention mechanism to our network. In addition, we use sev-

eral data augmentation techniques to mitigate the problem of gen-

eralization capability of our system when it is evaluated on the au-

dio recordings acquired by different recording devices. 

2. EXPERIMNET SETUP 

2.1.  Acoustic Feature 

The development dataset includes a training subset and an 

evaluation subset. The training and evaluation subsets consist of 

13962 and 2968 audio recordings, respectively. The file 

information of all audio recordings are as follows: 44.1 kHz sam-

pling rate, 2 bytes per sample, and mono channel. In addition, to 

calculate the log-mel spectrogram feature, we use 2048 fast Fou-

rier transform points with 1024 hop-lengths. We extract the power 

spectrum using the LibROSA library and use the log-mel scale. 

Consequently, we obtain a log-mel spectrogram with 128 fre-

quency bins. In addition, the delta and delta-delta coefficient of the 

log-mel spectrogram are calculated and added to the channel. To 

obtain the same temporal size, we apply padding to the delta and 

delta-delta coefficient. Therefore, the size of log-mel spectrogram 

is: 128 × 423 × 3, where 128, 423 and 3 stand for the numbers of 

frequency, time and channel, respectively. 

2.2.  Data Augmentations 

Due to the limited space-complexity of the model, we believe 

that data augmentation is an important way to improve the gener-

alization ability of the system. We manipulate the data as follows: 

1) Mixup: According to [4], mixup is an effective way for perfor-

mance improvement and is easy to be implemented. We set the 

coefficient of mixup to 0.4 and randomly mix the data of two ad-

jacent batches and their corresponding labels. 

2) Spectrum correction: It is proposed in [5] and demonstrates 

moderate device adaptation properties. However, the method of 

spectrum correction in this work needs some adjustment before it 

can be applied to ASC. The spectrum correction in this work aims 

to transform the given input into a spectrum with an ideal device 

as a reference. We here employ spectrum correction as a data aug-

mentation technique. Inspired by [6], we first average the spectrum 

of all devices except for the device A, which is one of ways to 

create a reference device spectrum. Then, we obtain additional 

data by correcting the spectrum of the device A. 

3) Pitch shift and speed change: For each training audio recording, 

we randomly change their pitch and speed. 

4) Mix audios: Inspired by [6], we randomly mix two audio re-

cordings from the same acoustic scene, with the goal of simulating 

more devices, smoothing the transition among devices, and reduc-

ing the differences among devices. 

2.3.  Model Design 

As shown in Figure 1, our model is based on a lightweight 

residual network with depthwise separable convolution. The 

depthwise separable convolution module can greatly reduce the 

size of the network’s parameters, which is suitable for the model 

with low space-complexity. Inverted Residual Block is composed 

of several convolutional layers as shown in the Figure 2. After 
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each convolutional layer, batch normalization (BN) layer is added 

to accelerate the performance of the model and the convergence 

speed. After the BN layer, we use the ReLU activation function. 

Considering the differences among log-mel energy, first-order 

difference, and second-order difference, we add channel attention 

mechanism into the model. In addition, we notice that different 

scenes might have noteworthy parts in frequency or time, so we 

also serialize spatial attention after channel attention, as done in 

[7]. The combination of channel attention and spatial attention 

module is called CASAM block. The CASAM block will be de-

scribed in detail below. 

 

Input

5x5 Conv,BN,Relu

3x3 Conv,BN,Relu

Global Average Pooling 2D

Softmax

CASAM block

Inverted residual block ×2

 

Figure 1.  Proposed Model 
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Figure 2. Inverted Residual Block 

 

In Figure 3, the input is a feature map F with dimension of 

H×W×C. We perform global average pooling and maximum 

pooling for obtaining two channel descriptions with dimension of 

1×1×C. 

 

 
Figure 3. Channel Attention Module 

Then, they are respectively fed into a two-layer neural network, 

i.e., multi-layer perceptron (MLP). The number of neurons in the 

first layer of the MLP is C/r, and the activation function is ReLU. 

The number of neurons in the second layer of the MLP is C. Note 

that this two-layer neural network is shared. Then, the weight co-

efficient Mc is obtained by adding the two features after a Sig-

moid activation function. Finally, the new-scaled feature can be 

obtained by multiplying the weight coefficient with the original 

feature F. 

In Figure 4, the input feature map F' with dimension of 

H×W×C is fed into the spatial attention module for implementing 

average pooling and maximum pooling on one channel dimension 

to obtain two channel descriptions with dimension of H×W×1. 

These two channel-descriptions are concatenated together accord-

ing to the channel. Finally, the concatenation of these two descrip-

tions is fed into a 7×7 convolution layer and the activation func-

tion of Sigmoid for obtaining the weight coefficient MS. The new 

feature map after scaling is obtained by multiplying the weight 

coefficient MS with the feature map F'. 

 

 
Figure 4. Spatial Attention Module 

 

2.4.  Train  

All experiments in this work are conducted using Keras. The op-

timizer is the stochastic gradient descent. For the loss function, 

the categorical cross-entropy loss is used. All our models are 

trained for 600 epochs with a batch size of 16. In addition, the 

learning rate is set to 0.1, along with a decay factor of 1 × 0.00001. 

At epoch 2, 6, 14, 30, 126, 254, and 511, the learning rate is reset 

for obtaining the re-training effect, while different retraining from 

scratch can improve the training speed of the model and the train-

ing results remain consistent. We use the checkpoint with the 

highest validation accuracy as the best model. 

3. QUANTIZATION FOR MODEL COMPRESSION 

In subtask A, the limit of space-complexity for the model is 

128 KB excluding zero parameters. That is, the model contains at 

most 32768 parameters when using float-point operation with 32 

bits. In order to meet the requirement, we use a post-training quan-

tization method, which is provided by Tensorflow2 [8], for com-

pressing our model. Quantization not only reduces the model size 

but also improves hardware accelerator latency with little degra-

dation in final classification accuracy. And it will not cause sig-

nificant impact on the performance of the system. 

4. RESULTS 

The validation subset of the development dataset contains 

2968 audio tracks, and contains new recording devices. We cal-

culate the overall accuracy and evaluation indexes such as log-



Detection and Classification of Acoustic Scenes and Events 2021  Challenge 
  

loss on development dataset. We submitted four systems, system 

1 and system 2 employ 55 convolution kernel. The training 

epochs of system 1 and system 2 are different. System 1 was 

trained with 600 epochs, while system 2 is trained with 800 

epochs. System 3 and system 4 use the convolutional kernel size 

of 33, and both systems are trained with 600 epochs. At the 

same time, there are four inverted residual blocks in system 4. The 

specific results are shown in the Table 1. Table 2 presents the de-

vice-wise accuracy. Our largest model is system 4, whose number 

of non-zero parameters is 50238 and whose size after quantization 

compression is 102.9 KB. 

 
Table 1. Class-wise accuracies obtained by the proposed method (in %). 

Class Baseline Sys 1 Sys 2 Sys 3 Sys 4 

airport 40.5 51.7 58.8 55.1 49.3 

bus 47.1 80.8 81.1 82.5 82.2 

metro 51.9 67.7 67.3 67.0 68.7 

metro sta-

tion 
28.3 63.6 70.0 72.7 75.1 

park 69.0 83.8 86.2 83.5 87.5 

public 

square 
25.3 61.6 52.9 56.6 62.0 

shopping 

mall 
61.3 86.2 66.7 79.1 79.1 

street pedes-

trian 
38.7 56.6 45.5 55.6 55.2 

street traffic 62.0 86.5 90.6 85.2 84.5 

tram 53.0 77.7 77.4 79.7 80.4 

average 47.7 71.6 69.6 71.7 72.4 

 

Table 2. Device-wise accuracies obtained by proposed method (in %). 

Device Sys 1 Sys 2 Sys 3 Sys 4 

A 80.9 84.8 83.6 82.1 

B 73.9 69.9 72.3 76.3 

C 75.1 76.6 77.5 73.6 

S1 68.2 66.7 72.4 71.5 

S2 66.7 67.3 64.8 67.3 

S3 72.4 73.0 73.0 73.6 

S4 68.8 66.7 68.2 70.0 

S5 72.1 63.9 69.7 72.1 

S6 66.7 57.9 63.6 65.2 

 

5. CONCLUSIONS 

We proposed an ASC method using a lightweight residual 

network with both channel and spatial attentions. In addition, some 

data augmentation techniques were adopted for further improving 

the performance of the proposed method. The size of our model is 

102.9 KB after model compression, which is lower than the size 

limit of 128 KB. Evaluated on the development dataset, classifica-

tion accuracy of 72.4% was obtained by the proposed method.  
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