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ABSTRACT

Automated audio captioning is the task of describing the au-
dio content of a given audio signal in natural language. Through
advancing for years, transformer-based language models are widely
used in audio captioning. However, most architectures based on
transformer, cannot learn prior knowledge between samples well,
leading to worse text decoding. For better acoustic event and lan-
guage modeling, a sequence-to-sequence model is proposed which
consists of a CNN-based encoder, a memory-augmented refiner and
a meshed decoder. The proposed architecture refines a multi-level
representation of the relationships between audio features integrat-
ing learned a priori knowledge. At decoding stage, it exploit low-
and high-level features with a mesh-like connectivity. Experiments
show that the proposed model can achieve a SPIDEr score of 0.2645
on Clotho V2 dataset.

Index Terms— DCASE 2021, audio captioning, transformer

1. INTRODUCTION

Automated audio captioning is an inter-modal translation task,
where a system generates the textual description for a given audio
signal [1].

Similar to image captioning, audio captioning is mostly based
on an encoder-decoder architecture. Most captioning techniques
have employed RNNs as language models and used the output of
one or more layers of a CNN to condition language generation [2] .
In order to capture visual features better, the feature extractor is usu-
ally pre-trained on large-scale classification datasets, like ImageNet.
Inspired by that, the PANNs [3] are utilized for audio embeddings,
which are pre-trained on the AudioSet [4].

As for text decoding stage, mainstream language model
schemes still take transformers as their primary frameworks at
present [5]. Transformers are created to excavate long-range depen-
dencies among word embeddings with self-attention operator in the-
field of Natural Language Processing(NLP), and achieve great re-
sults in sequence generation tasks. However, the basic self-attention
has a significant limitation. Because everything depends solely on
pairwise similarities, self-attention cannot model a priori knowl-
edge on relationships between samples. To achieve better feature
extraction and language modeling, a memory-augmented refiner
and a meshed decoder are applied [6]. These models incorporate a
region encoding approach that exploits a priori knowledge through
memory vectors and a meshed connectivity between encoding and
decoding modules.

Experiment results show that the proposed method outperforms
the previous baseline model and reached a SPIDEr score of 0.2645
on Clotho V2 dataset for audio captioning task.

2. METHOD

The proposed audio captioning model architecture is based on
transformer structure. The modifications are listed as below.

2.1. CNN-based Extractor

In audio captioning challenge, a system is required to under-
stand and model the relationships between audio and textual ele-
ments, and then to generate a sequence of corresponding words.
This has usually been tackled via better semantic feature capture.
Similar to audio captioning, most captioning techniques have em-
ployed CNN-based framework to encode visual information in com-
puter vision tasks. Inspired by that, for the input spectrogram, the
CNN-based network is adapted and used for audio feature extrac-
tion.

The architecture of convolutional neural networks (CNN) has
shown great performance on audio pattern recognition. CNN-
based methods have achieved state-of-the-art performance in sev-
eral DCASE challenge tasks, such as acoustic scene classification
and sound event detection. The CNN system consists of several
convolutional blocks. Each convolutional block contains several
kernels that are convolved with the input feature maps to capture
their local patterns.

Despite their wide adoption, CNN-based feature extractors suf-
fer from excessive extraction ability and limited receptive field.
CNNs with large receptive field degrade in performance and fail
to generalize in acoustic scene classification. Considering this fac-
tor, we employ a relatively simple CNN, such as a 10-layer CNN,
rather than a deeper model [7] .

2.2. Memory-Augmented Refiner

Similar to image captioning, instead of directly feeding CNN
features to the decoder, a refining module is proposed, which con-
tains a memory-augmented transformer encoder to refine their rep-
resentations. In our framework, attention mechanism is utilized to
incorporate spatial knowledge on the audio encoding stage. The
memory-augmented refiner extends “keys” and “values” set with
additional “slots”, which can encode a priori knowledge on rela-
tionships between audio features. Unlike traditional self-attention
operator, these additional “slots” are designed to capture auxiliary
information for inference.

The most basic computation in the transformer, scaled dot-
product attention, is adapted for additional memory “slots” [6],
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Table 1: Experimental results on Clotho V1 evaluation data

model Bleu1 Bleu2 Bleu3 Bleu4 METEOR ROUGEL CIDEr SPICE SPICEr

Cnn10-Transformer 0.5275 0.3393 0.2213 0.1363 0.1593 0.3623 0.3325 0.1131 0.2228
Cnn14-Transformer 0.5369 0.3493 0.2213 0.1440 0.1602 0.3676 0.3487 0.1119 0.2303

ResNet22-Transformer 0.5409 0.3630 0.2460 0.1578 0.1633 0.3743 0.3689 0.1170 0.2429
Cnn10-M2Transformer 0.5565 0.3635 0.2419 0.1562 0.1667 0.3728 0.3958 0.1129 0.2543
Cnn14-M2Transformer 0.5562 0.3565 0.2359 0.1526 0.1661 0.3594 0.3983 0.1175 0.2579

ResNet22-M2Transformer 0.5586 0.3597 0.2374 0.1537 0.1681 0.3655 0.3865 0.1202 0.2533

Table 2: Experimental results on Clotho V2 evaluation data

model Bleu1 Bleu2 Bleu3 Bleu4 METEOR ROUGEL CIDEr SPICE SPICEr

Cnn10-M2Transformer 0.5608 0.3691 0.2493 0.1666 0.1693 0.3727 0.4064 0.1184 0.2624
Cnn14-M2Transformer 0.5550 0.3574 0.2361 0.1525 0.1683 0.3658 0.4088 0.1203 0.2645

ResNet22-M2Transformer 0.5671 0.3735 0.2517 0.1647 0.1704 0.3770 0.3984 0.1160 0.2572
ResNet38-M2Transformer 0.5631 0.3671 0.2441 0.1578 0.1698 0.3707 0.4059 0.1190 0.2624

which can be defined as:

MemoryAttention(Q,K,V ) =

Softmax(
(WqQ)[WkK,Mk]T√

dk
)[WvV ,Mv]

(1)

where Q ∈ Rnq×dmodel , K ∈ Rnk×dmodel , V ∈ Rnv×dmodel ,
Mk ∈ Rm×dk , Mv ∈ Rm×dv , are the queries, keys, values,
slots on keys and slots on values, respectively. Wq ∈ Rdmodel×dq ,
Wk ∈ Rdmodel×dk , Wv ∈ Rdmodel×dv are linear layer weights for
queries, keys, and values vectors. [·, ·] indicates concatenation.

2.3. Meshed Decoder

The decoder used in the proposed model is a meshed trans-
former decoder, which accepts (refined) feature vectors, then gener-
ates a sequence of caption. Different from general decoder, meshed
decoder utilizes multi-layer representation of refined features while
still constructing the multi-layer structure [6]. The meshed de-
coder can obtain multi-layer features simultaneously during decod-
ing, which can take advantage of all encoding layers during the gen-
eration of the sentence.

In order to capture all encoding layers, meshed cross-attention
operator is proposed. We first use keys and values from the encoder
to calculate cross-attention along with queries from the decoder, as
follows:

Γ(X̃i,Y ) = Attention(WqY ,WkX̃
i,WvX̃

i) (2)

where X̃i stands for output from encoding layer i, while Y is the
input sequence vector.

To adjust importance of each encoder layer feature dynamically,
a matrix of weights αi is calculated as:

αi = σ(Wi[(Y ),Γ(X̃i,Y )] + bi) (3)

where [·, ·] indicates concatenation, σ represents sigmoid activation,
Wi and bi are parameters of a linear layer.

At last, meshed cross-attention operator can be modified as

MeshedAttention(X̃,Y ) =

N∑
i=1

αi � Γ(X̃i,Y ) (4)

3. EXPERIMENTS

3.1. Datasets

We evaluated our model on the Clotho dataset [8], which con-
sists of audio clips from the Freesound platform and its captions
were annotated via crowdsourcing. Clotho dataset is an audio cap-
tioning dataset, now reached version 2. And all audio samples in
the Clotho dataset are of 15 to 30s duration and captions are eight
to 20 words long.

For version 2, We used the development and validation split of
total 4884 audio clips with 24420 captions (i.e. one audio clip has
five ground-truth captions) for training and the evaluation split of
1045 audio clips with 5225 captions for testing. As for version 1,
the development split of 2893 audio clips is used for training and
the evaluation split of 1045 audio clips is used for testing.

Among the metrics used, BLEUn [9] measures a modified n-
gram precision. ROUGEL [10] measures a score based on the
longest common subsequence. METEOR [11] measures a harmonic
mean of weighted unigram precision and recall. CIDEr [12] mea-
sures a weighted cosine similarity of n-grams. SPICE [13] measures
the F-score of semantic propositions extracted from caption and ref-
erence. SPIDEr [14] is the arithmetic mean between the SPICE
score and the CIDEr score. In all metrics used, higher scores indi-
cate better performance.

3.2. Results

Table 1 shows the evaluation results on the Clotho V1 dataset.
As it can be seen, M2Transformer method surpasses the current
state of the art on all metrics. With respect to Cnn14-Tranformer
system, Cnn14-M2Tranformer system achieves an advancement of
2.7 SPICEr points.

The performance of the proposed model on Clotho V2 dataset
is shown in Table 2. It can be seen that the proposed model reached
a SPIDEr score of 0.2645.

4. CONCLUSION

We present and use M2 Transformer, a novel Transformer-
based architecture for audio captioning. Our system learns a multi-
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level representation of the relationships between audio features inte-
grating learned a priori knowledge, and uses a mesh-like connectiv-
ity at decoding stage to exploit low- and high-level features. Exper-
imental results validate the effectiveness of our proposed approach
for audio captioning task.
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