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ABSTRACT 

This report describes the AITHU system for Task 2 of the 
DCASE 2021 challenge, Unsupervised Anomalous Sound Detec-

tion for Machine Condition Monitoring under Domain Shifted 

Conditions. The task aims to detect audio recordings containing 
anomalous machine sounds in a test set, when the training da-

taset itself does not contain any examples of anomalies. Moreo-

ver, the task is performed under the conditions that the acoustic 

characteristics of the training data and the test data are different 
(i.e., domain mismatch). We perform weighted mixing of data in 

different sections instead of to distinguish the data in the same 

part of different fields, and train a neural network to recognize 
mixed weights. The results of our approach are better than base-

line systems for all machine types. In the development set, the 

official score of our approach is 67.12%. 

Index Terms— Anomalous Sounds Detection, do-

main shift, self-supervision  

1. INTRODUCTION 

Anomalous sound detection (ASD) is the task of identifying 

whether the sound emitted from a machine is normal or anoma-
lous. In reality, it is difficult to collect enough abnormal sound 

data from machines, and only enough normal data from machines 

can be collected. Therefore, the main difficulty of abnormal 
sound detection is to train a model that can distinguish between 

normal sound and abnormal sound using only normal sound data. 

Another challenge is that the task is performed under conditions 
where the acoustic characteristics of the training data and the test 

data are different (i.e., domain shift)[1]. In this challenge, all data 

are divided into two domains, source and target. Each domain has 
its own training data and test data, but the amount of data in these 

two domains is very unbalanced, the training data of the target 

domain is very small, and the ratio of the training data of the 

source domain to the training data of the target domain is 1000:3. 
So we have to train a neural network using data in the source 

domain and a small amount of data in the target domain, and the 

network should perform well in both source domain and target 
domain. 

2. METHOD 

The method we use is a self-supervised learning method. Self-
supervision using classification tasks has been previously used 

for detecting anomalies in [2][3][4]. In these works, the learning 

task involves networks to discriminate between multiple geomet-

ric transformations. We employ a different strategy here. In this 
task, the data includes different machine types, each machine 

type is divided into six sections, and each section is divided into 

source and target domains, further we may use the section in-
formation of the data for self-supervised learning. We weighted 

and mixed the data of different sections, and trained the neural 

network to recognize the mixed weights. For example, if the data 

x0 of section 0 and the data x1 of section 1 are weighted and 
mixed in equal proportions, the expected output of the neural 

network is [0.5, 0.5, 0.0, 0.0, 0.0, 0.0]. When the weight of a 

section is set to 1, and the weights of other sections are set to 0, 
the neural network is trained to recognize the data of different 

sections. In the experiment, we found that when the number of 

mixed sections is greater than two or there are too many types of 
mixed, the result will be worse. There are three kinds of blend-

ing weights we use, each of which is applied to all sections. 

1) Set the weight of one section to 1, and set the weight of 
other sections to 0. 

2) Select two sections to be mixed in equal proportions, 

and set the weights of other sections to 0. 
3) Select two sections to mix with the weights of 0.6 and 

0.4, and set the weights of other sections to 0. 

All blending is for pre-processed data. 

3. EXPERIMENTS 

3.1. Pre-Processing 

 We first performed some preprocessing on the raw audio da-
ta[5][6]. The preprocessing is done in a similar way as in the 

MobileNetV2-based baseline system[1]. First, the raw audio is 

normalized to zero mean and standard deviation one. Then we 

computed a mono-channel Short Time Fourier Transform using 
1024-sample windows and a hop-size of 512 samples. We 

weighted the resulting power spectrogram with a mel-scaled 

filter-bank of 128 filters. The log-mel spectrogram is shown as 
Figure 1. 

 
Figure 1: log-mel spectrograms of the sound
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Table2: The harmonic mean of the AUC and pAUC in parentheses for machine types over all sections and domains. 

Algorithm Toy Car Toy Train Fan Gearbox Pump Slider Rail Valve 
Harmonic 

mean 

Baseline 
(AE) 

62.49 
(52.36) 

61.71 
(53.81) 

63.24 
(53.38) 

65.97 
(52.76) 

61.92 
(54.41) 

66.74 
(55.94) 

53.41 
(50.54) 

57.27 

Baseline  

(MobileNetV2) 

56.04 

(52.36) 

57.46 

(51.61) 

61.56 

(63.02) 

66.70 

(59.16) 

61.89 

(57.37) 

59.26 

(56.00) 

56.51 

(52.64) 
57.67 

Our approach 
73.86 

(56.51) 

65.90 

(60.85) 

72.05 

(69.26) 

72.16 

(61.29) 

71.08 

(60.10) 

68.43 

(61.36) 

84.86 

(72.24) 
67.12 

3.2. Inputs 

The inputs to the classifiers are 128 × 256 images, which 

are the log-mel spectrograms computed using the follow-

ing parameters: 

1. With hop length of 32ms between frames, each input 

10s file is split into frames of length 64ms. 

2. 1024-FFT and 128 Mel bins are used to featurize 

each frame. 

3. 256 featurized frames are stacked to form a 128 × 

256 image. 

4. The successive 128 × 256 images have an overlap of 

255 frames. 

3.3. Network Architecture 

We use the model architecture (Table 1) introduced by Koutini 

et al.[7], a receptive-filed-regularized, fully convolutional, resid-

ual network (ResNet)[8]. 
Table 1: Model architecture for audio classification by Koutini et al.[7]. 
#K and KS are the number of kernels and kernel size, respectively. 
Residual Blocks (RB) consist of two Convolutional (Conv) layers with 

#K kernels, each followed by a Batch Normalization (BN) layer. GAP is 
a Global Average Pooling Layer. All activation functions are ReLUs. a 

and b are set to either 1 or 3 to control the receptive filed of the network. 
c controls the number of convolution filters. 

                  ResNet                             

Type #K KS1 KS2 

Conv c*20 5  

BN - -  

RB c*20 3 1 

Max 

Pool 

- 2 - 

RB c*20 3 3 

Max 

Pool 

- 2 - 

RB c*20 3 a 

RB c*20 3 b 

Max 

Pool 

- 2 - 

RB c*21 1 1 

RB c*22 1 1 

RB c*22 1 1 

Conv 1 1 - 

BN - - - 

GAP - - - 

 

3.4. Training 

After data preprocessing, the raw audio file becomes a two-

dimensional matrix. The first dimension of the matrix represents 
the number of mel-bins, and the second dimension is the time 

dimension. When training the neural network, each time a fixed-

length time frame is selected as the input, the step interval is one, 
and the batch size is 32. The KL divergence is used as the loss 

function, the parameter update rule is Adam, and the neural 

network is trained for 20 epochs. 

3.5. Anomaly score 

Assume that the predicted probability of the correct section 

corresponding to the input data output by the neural network is p, 
then the anomaly score of the input data is calculated by (1). The 

anomaly score of each test file is the mean value of the anomaly 

scores of all input data belonging to this file. Each input of the 
test file is also taken to a fixed-length time frame, with a step 

interval of one. 

1
_ log

p
anomaly score

p

−
=            (1) 

4. RESULTS 

In this section, we report results using the development set. In 
Table 2, we report AUC results and pAUC in parentheses for the 

MobileNetV2-based baseline model, the AE-based baseline 

model, and our submission for all 7 machines averaged across 
sections and domains. As we can see from Table 2, the results of 

our approach are better than baseline systems for all machine 

types. The harmonic mean of the AUC and pAUC scores over 

all the machine types, sections and domains is 67.12%. 
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