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ABSTRACT

This report presents an unsupervised method for detecting anoma-
lous industrial machine sounds, taken under two different condi-
tions and shifted domains, and submitted to DCASE 2021 Task 2.
The method tries to map the distribution of data into a learned latent
space, using a reconstructive autoencoder followed by an additional
second encoder. Furthermore, the method employs a discrimina-
tor trying to differentiate between the input and the reconstructed
audio to and from the autoencoder. All components are jointly op-
timized, using a sum of weighted losses and utilizing an adversarial
setting between the autoencoder and the discriminator. Anomaly
is detected through the distance between the output of the two en-
coders. Obtained results show that the method performs better than
the provided baseline in some cases.

Index Terms— Anomaly detection, generative adversarial net-
work, domain adaptation, GAN, autoencoder

1. INTRODUCTION

Nowadays, detection of anomalous sound for detecting machine
conditions becomes one of the most important issues in monitor-
ing and diagnosing fault in industrial systems. Deep learning meth-
ods, and specifically unsupervised learning based ones, are widely
used to deal with this problem as the types of anomalies are usually
undefined and unknown in real world applications.

In general, unsupervised audio anomaly detection methods are
divided into three categories. The first category seems to include the
vast majority of methods, which are reconstruction-based ones such
as dense and convolutional autoencoders [1, 2, 3], and generative
adversarial network (GAN) based anomaly detection methods [4].
These methods find the anomalies by thresholding reconstruction
error between the input and the output of the employed autoencoder,
by firstly mapping the input audio signals into a learned and low di-
mensional space, and then try to reconstruct the input audio signals
from the latent, low-dimensional space data. It is assumed that the
anomaly cannot be reconstructed appropriately by the latent repre-
sentation of the input data, as a result of which the reconstruction
error can be used for anomaly detection [5]. Though, the efficiency
of the methods in this first category is restricted since finding the
appropriate low-dimensional data space is difficult in some appli-
cations [6]. Moreover, these approaches cannot sometimes deal
with the unbalanced data gathered from devices in different envi-
ronments [7].

*Equally contributing authors.

The second category of methods consists of one class classi-
fication approaches such as deep support vector data description
(SVDD) [8, 9] which tries to find a boundary around non-anomalous
instances and label the anomaly data outside this area. The third
category contains clustering methods such as k-means clustering
and Gaussian mixture models which cluster the data and detect the
anomalies according to their distance [10, 11, 12]. Itis reported that
these distance-based anomaly detection methods cannot be used
with high dimensional data due to curse of dimensionality [13].

According to previous work [14], architectures which use
GANs alongside of autoencoders are able to address some of the
above issues which in turn will end up in better results while deal-
ing with anomaly detection problem. Based on that, we follow the
GAN-based method presented in [14], adopt it by having all em-
ployed learned processes to be non-symmetric, and apply it on the
task of anomalous sound detection under domain shifted condition.

The rest of the report is organized as follows. In Section 2 is
described the proposed method and Section 3 describes the exper-
imental setup. The obtained results are presented in Section 4 and
Section 5 concludes the report.

2. PROPOSED METHOD

Our method consists of two encoders and one decoder, takes as an
input an audio signal, and outputs an indication of whether this sig-
nal contains anomalous sound, regarding a specific device. To op-
timize the encoders and the decoder, we additionally employ a dis-
criminator, a GAN setting, and three losses, and we utilize a dataset
of only non-anomalous sounds. During training, the first encoder
takes as an input the non-anomalous sound and the decoder tries to
reconstruct the input audio from the output of the first encoder. The
second encoder, tries to reconstruct the output of the first encoder,
using the output of the decoder. The discriminator tries to differ-
entiate between original input audio and the output of the decoder.
The training happens jointly, minimizing corresponding losses for
the above processes. After optimization, we use the output of the
encoders to determine if the input is anomalous audio or not. An
illustration of our method is in Figure 1 and the code for the imple-
mentation is available online'.

Specifically, we follow the method presented in [14] and we
employ an encoder AE g1, a decoder AFEp, an additional encoder
AF g2, and a discriminator D. The input to AEg; is a sequence
of T vectors with F' audio features, X € RT*¥. AEg; consists
of sequential 2D convolutional blocks, where each block consists

Ihttps://github.com/afshindini/DCASE_2021_
Challenge_Task2.git
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Figure 1: Our proposed method
of a 2D convolutional neural network (CNN), followed by a leaky _
rectified linear unit (LeakyReLU) non-linearity, and a batch normal- Ly = ||o(D(X)) — o(D(X))]]2- 4)

ization. AEg1 processes sequentially the input X and outputs an
encoded representation of X

Z = AEp (X), (€))]

where Z € RT*F' with T < T and F’ < F. The target of
AFEg; is to model the underlying distribution of the input, non-
anomalous data, according to the typical set-up of an autoencoder
under a reconstruction objective [15].

Then, AEp takes as an input the Z and outputs a reconstructed
version of X, X. AFEp consists of a series of transposed 2D CNNss,
each one followed by a rectified linear unit (ReLU) and a batch
normalization, except the last CNN which is followed only by a
tanh non-linearity. AEp processes Z as

X = AEp(Z), (2)

where X € RT*F. The target of AFp is to learn to reconstruct
back the original input X, based on the information learned from
AFEg:. X is given as an input to the second encoder, AFE g2, which
has the exact same hyper-parameters and architecture as AEg1.
The purpose of using AE > is to have a second encoded form of
X, in order to compare with the output of AEg;. The hypoth-
esis behind that, and according to [14], is that the reconstructing
autoencoder AEg; and AEp, will learn to model the underlying
distribution of the non-anomalous data. Thus, any shift from that
distribution, will be outlined by the usage of AF 2. The output of
AFEg> is calculated as

Z' = AEgy(X). 3)

To enforce that X will conform to the original distribution of X,
we employ D which is a series of 2D CNNss, each one followed by
LeakyReLU and a batch normalization process. The discriminator
D tries to differentiate between X and X, by employing the loss

where o is the sigmoid function and the output dimensionality of
Dis 1. AEg1, AEp, and AEE, are optimized by employing the
losses

Lano = ||Z_Z/||2 and (5)
Lree = [|X = X1 ©)

We jointly optimize AEg1, AEp, AEE2, and D, by minimizing
the [«m[

Liot = Wree Lrec + WanoLano + Wadv Ladv. @)

3. EXPERIMENTAL SETUP

In order to test our method, we apply it on the development dataset
of DCASE 2021 challenge [16, 17] and compare the results for
source and target domains with the two baseline methods, men-
tioned in this challenge. The dataset is divided into three splits,
namely development, additional, and evaluation. Each split con-
tains seven types of machines as Fan, Slider, Gearbox, Pump, Valve,
ToyCar and ToyTrain and each type of machine consists of three
sections as machine IDs. Each section also consists of anomalous
and non-anomalous data from the two domains. The source domain
is the main domain where most of the data are collected from. The
target domain is the shifted domain one only a few audio files are
provided from this one. All audio clips in the dataset are 10 sec-
onds long and as our input features, X, we use F' = 128 mel band
energies, by utilizing 1024 samples windows with 50% overlap, re-
sulting in T" = 312.

We train our method separately for each machine type and per
each section or machine ID of the development split. Then we eval-
vate using the 200 hundred non-anomalous and anomalous audio
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Table 1: Average AUC for source domain data

Sections
Devices Section 0 Section 1 Section 2
AE MobileNet Ours AE MobileNet Ours AE MobileNet Ours
Fan 66.7 % 43.6% 575% | 67.4% 78.3% 54.7% | 64.2% 74.2% 72.9%
Gearbox 56.0% 81.4% 68.8% | 72.8% 60.7% 70.4% | 59.0% 71.6% 72.8%
Pump 67.5% 64.9% 67.6% | 82.4% 86.3% 61.5% | 63.9% 53.7% 62.1%
SlideRail  74.1% 61.5% 74.4% | 82.2% 80.0% 71.1% | 78.3% 79.9% 78.3%
ToyCar 67.6% 66.6% 66.9% | 62.0% 71.6% 62.6% | 74.4% 40.4% 64.7%
ToyTrain  72.7% 69.8% 44.6% | 72.7% 64.8% 66.5% | 69.9% 69.3% 56.5%
Valve 50.3% 58.3% 539% | 53.5% 53.6% 55.7% | 59.9% 56.1% 62.1%
Table 2: Average AUC for target domain data
Sections
Devices Section 0 Section 1 Section 2
AE MobileNet Ours AE MobileNet Ours AE MobileNet Ours

Fan 69.7 % 53.3% 68.0% | 50.0% 78.1% 57.8% | 66.2% 60.3% 69.2%
Gearbox 74.3% 75.0% 71.0% | 721% 56.3% 68.3% | 66.4% 64.5% 68.5%
Pump 58.1% 59.1% 60.6% | 47.4% 71.9% 55.5% | 62.8% 50.2% 57.6%
SlideRail  67.2% 52.0% 68.8% | 66.9% 46.8% 62.4% | 46.2% 55.6% 63.5%
ToyCar 54.5% 61.3% 57.9% | 64.2% 72.5% 66.3% | 56.6% 45.2% 60.3%
ToyTrain  56.1% 46.3% 47.5% | 51.3% 53.4% 56.0% | 55.6% 51.4% 58.6%
Valve 47.1% 52.2% 56.6% | 56.4% 68.6% 59.4% | 55.2% 53.6% 54.9%

clips taken from source and also another 200 hundred audio clips
from the target domain, provided by the employed dataset. AUC
metric is used for analyzing and comparing the results, as suggested
by DCASE 2021 Task 2 [18].

Different architectures with various complexity are considered
for each sub network. For AEg; and AEgs, four convolutional
layers with kernel size of five, stride of two, and padding of two,
are used. For AFp, a smaller architecture is designed in such a
way that only three transposed convolutional networks with kernel
size of five, stride of two, and padding of two. D structure is sim-
ilar to the encoders, however, a more complex network with five
convolutional layers, kernel size of five, stride of two, and padding
of two, is used. Regarding the total loss, L, we consider same
weights for Lya and Lano (Wava = Wano = 1) and a larger weight
for Lrec (wree = 50) since it is important for this architecture to be
able to reconstruct X in every situation and choosing larger weight
for wre. Will ascertain this objective in much shorter time.

We employ around 300 epochs for minimizing L, using the
stochastic gradient descent algorithm (SGD) and a batch size of
64. We use SGD rather than Adam [19] since it is proven theo-
retically that in most cases SGD generalizes better than Adam, and
it is also able to escape better from the flattened local minima than
Adam [20].

4. RESULTS

Since the labels for anomalous and non-anomalous data are only
specified for the development split, we represent the results of our
method over the development split in this report. We compare
our results with two baseline methods, mentioned in DCASE 2021
challenge as Autoencoder baseline method and also Mobile V2 ap-
proach. From Table 1 and 2, it is obvious that our approach achieves
better results in some cases even better than both of the baseline

methods. The best result in terms of AUC is highlighted per ma-
chine type and machine ID in these tables.

From our experimental process, we see that the asymmetric ar-
chitecture of AE. and D increases the performance of the method,
compared to the original proposal of the method in [14]. Consid-
ering a more complex discriminator than encoder and decoder al-
lows it to recognize the reconstructed features from the original ones
more precisely and this matter will force the encoder to be trained
in such a way that it will be able to find the distribution of the data
more precisely which in turn will increase the performance of the
whole approach. Moreover, we use a simpler network for the de-
coder compared to the encoder. From our experiment we saw that
asymmetric architectures for encoder, decoder, and discriminator
allow the network to achieve better results in both domains.

5. CONCLUSIONS

The results of evaluating each network on source sounds of each
machine type and machine ID are represented in Table 1 and the
similar results for target audio files are shown in Table 2. In this
paper, we presented an unsupervised anomaly detection approach
for DCASE 2021 challenge Task 2. We pro-posed a combination
of GAN-based and autoencoder architecture in order to find the la-
tent vector space of the non-anomalous audio clips and use it for
detecting the anomalous audio files. The method has shown a bet-
ter or similar results rather than baseline methods in terms of AUC
specifically on the target data from the shifted domain which means
that the proposed method is robust to domain shifts and can achieve
acceptable performance in the cases where the audios are recorded
from different environments.
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