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ABSTRACT

This paper describes our submission to the DCASE 2021 challenge.
Different from the baseline and most other approaches, our work
focuses on training a lightweight and well-performing model which
can be used in real-world applications. Compared to the baseline,
our model only contains 600k (15 %) parameters, resulting in a size
of 2.7 Mb on disk, making it viable for applications on low-resource
devices such as mobile phones. Our model is trained using unsu-
pervised data augmentation as its consistency criterion, which we
show can achieve competitive performance to the more common
mean teacher paradigm. Our submitted results on the validation set
result in a single model peak performance of 36.91 PSDS-1 and
57.17 PSDS2, outperforming the baseline by an absolute of 2.7 and
5.0 points respectively. Notably our approach achieves an Event-
F1 score on the development set of 39.29 without post-processing.
The best submitted ensemble system using a 4-way fusion achieves
a PSDS-1 of 38.23 and PSDS-2 of 62.29 on the validation dataset.

Index Terms— Semi-supervised learning, Convolutional re-
current neural networks, Weakly supervised learning, unsupervised
domain adaptation.

1. INTRODUCTION

This work focuses on modelling audio signals for sound event de-
tection (SED). The main objective within SED is to categorize (i.e.,
tag) an event, with its respective on- and offsets.

One possible method to train a SED model is by using fully
supervised labels, where on- and offsets for each event of interest
are provided. However, obtaining fully supervised labels via man-
ual labeling is expensive and thus might be a hindrance for scal-
ing to large datasets. To the best of our knowledge, there currently
only exists a single large-scale manual labeled dataset, being Au-
dioset [1], which provides full annotation for around 200 hours of
data.

This paper focuses on semi-supervised sound event detec-
tion, where only incomplete data is provided. Specifically the
DCASE2021 Task4 challenge focuses on low-cost sound event de-
tection, where only a small fraction of data (4 hours) is manually
weakly annotated. All other available data sources are either gener-
ated or do not contain labels.

Currently SED can be used for a variety of applications, query-
based sound retrieval [2, 3], smart cities, and homes [4, 5], voice
activity detection [6, 7] as well as an important component of
audio captioning [8, 9, 10, 11, 12]. Most current approaches

within SED utilize neural networks, in particular convolutional neu-
ral networks [13, 14] (CNN), convolutional recurrent neural net-
works [15, 16] (CRNN) and other models such as transformers and
conformers [17, 18].

CNN models excel at audio tagging [19] and scale with data,
yet falling behind CRNNs and transformer approaches in onset and
offset estimations [20, 21, 22].

2. PROPOSED APPROACH

In the following, assume that x is an input (either raw-waveform or
some spectrogram) and ŷ is a predicted label.

Weakly supervised SED models commonly have two outputs:
A clip-level prediction head C(x) 7→ ŷ ∈ {0, 1}E and a frame-
level output F (x) 7→ ŷt ∈ {0, 1}E , t = 1, . . . , T for a frame at
time t. Both of these heads are directly connected via an aggre-
gation function: C(·) = agg(F (·)), which summarizes the frame-
level predictions to a single clip-level response. When training in
strictly weakly supervised fashion, only the clip-level prediction
head C can be learned, while F needs to be inferred by the model.
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Figure 1: Inconsistent predictions between the two output heads in
weakly-supervised SED are tackled in this work. The clip-level pre-
diction ŷ estimates the presence of ”Speech” and ”Vaccum cleaner”,
but the frame-level output ŷt additionally predicts the presence of
”Blender” (in bold).

One of the key problems regarding training of weakly-
supervised SED models is that both heads can predict contradictory
results. For example, the frame head F might predict the presence
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of a sound event e, due to factors such as noise or general similar-
ity of a sound event to another (Blender, Vacuum Cleaner), while
the clip head C predicts that e is not present. We show an exam-
ple of this behaviour in Figure 1. Since training data for weakly-
supervised SED is generally provided on clip-level, meaning that
the clip head C should provide reliable outputs, additional predic-
tions from F can be considered as an inconsistency. In order to
mitigate the inconsistency problem, we propose a simple learnable
clip-smoothing algorithm.

2.1. Learnable clip-smoothing

One of our main performance boosting factors is learnable clip-
smoothing. This technique is identical to clip-thresholding for
weakly-supervised SED [16], but since the DCASE2021 Task4
dataset provides strong frame-level labels, the clip-smoothing
threshold can now be jointly optimized with the weak labels.

In particular, clip-smoothing is computed as in Equation (1),
where ŷ(t)† is the clip-smoothed output of our model for event e
and ŷ(t)(e) is the model’s frame head output (F ):

ŷ†
t (e) = ŷt(e) ∗ ŷ(e). (1)

This approach should largely boost performance, since the
main evaluation metric is F1-score based, meaning that a conser-
vative prediction of sound events is preferred over a capricious one.
Specifically, the false alarms will be greatly reduced, since the clip-
level output will squash the frame-level probabilities for any non-
occurring event.

2.2. Unsupervised data augmentation for consistency training

Many techniques exist to utilize unlabeled data to improve model
performance. Mean Teacher (MT) [23] is a popular technique used
in recent DCASE challenges [14] to improve performance.

In our work, we avoid MT entirely, since:

1. Training two concurrent models is time consuming.

2. Evaluation is usually done on both models, since it is unclear
if teacher or student are the better performing model, further
adding to the time cost.

3. The DCASE Task4 dataset is in our opinion too small to fa-
cilitate large teacher/student models. A single lightweight
neural network should perform equally as well as larger al-
ternatives.

4. We believe that the main contributing factors of MT is that it
enables the usage of unlabeled data to improve performance.
Our work shows that training a teacher-student model is not
required to fully utilize unlabeled data.

We propose the use of unsupervised data augmentation
(UDA) [24] for consistency training in SED. The idea of UDA is
to compute a consistency loss for unlabeled data between an aug-
mented and a non-augmented ( or differently augmented ) sample.
However, to our knowledge UDA has not been previously used for
sound event detection tasks.

x† = Aug(x),
M(x) 7→ (ŷ, ŷt),

M(x†) 7→ (ŷ†, ŷ†
t ),

LUDA(x) = Lconsistency(ŷ
†, ŷ) + Lconsistency(ŷ

†
t , ŷt).

(2)

The UDA consistency training scheme is defined as in Equa-
tion (2). Here, a sample x is fed through a trainable neural network
M where clip (ŷ) and frame-level (ŷt) predictions are obtained.
The consistency between these predictions (ŷ, ŷt) and the predic-
tions obtained by augmenting the input sample x denoted as x† and
predict (ŷ†, ŷ†

t ) is the training objective. Note that in our work, we
use UDA for both model heads, whereas it would be possible to use
UDA for only weak or strong labels respectively. Also it is worth
mentioning that gradients are not computed duringM(x).

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Each 64-filter LMS is extracted
from a 25 ms window with a stride of 10 ms, resulting in an ap-
proximately 1001 × 64 dimensional input tensor. If segments are
shorter than 10 seconds, we zero-pad the input to the longest sample
within a batch. During inference we use a batch-size of 1, such that
padding has no effect on the final evaluation.

All experiments start with a learning rate of 0.001 and are run
for at most 200 epochs, with a linear warmup duration of 20 batches
using the Adam optimizer. The learning rate is halved every 1000
batches. Batchsizes are set to be 32 for weak and synthetic data and
64 for unlabeled data. The available weak training data is split into a
90% training and a 10% cross-validation portion. Cross-validation
is done on the 10% held-out weak subset with the additional syn-
thetic validation data. The training objective is the sum of the weak
F1 and the intersection-F1 score, whereas training is stopped if the
model did not improve for 15 epochs. Pytorch [25] was used as the
neural network back-bone.

3.1. Dataset

The dataset used in this work is the DCASE2021 dataset, which
focuses on sound event detection in domestic environments.

The DCASE 2021 dataset is split into a development (used for
training) and an evaluation section. The development set is further
split into training and validation sections. The training section con-
trains three datasets Dweak,Dsyn,Dun, as seen in Equation (3).

Dweak = {(x1, y2), (x2, y2), . . . , (xN , yN )},
Dsyn = {(x1, y2), (x2, y2), . . . , (xM , yM )},
Dun = {x1, . . . , xP }.

(3)

Note that the labels for Dweak are provided on clip-level, i.e., yj ∈
{0, 1}E , j ≤ N , while labels for Dsyn are provided at frame-level,
i.e., yk ∈ {0, 1}ET , k ≤ M for each timestep in T . The unlabeled
dataset is contains only samples with target-events also seen in the
weak training data.

3.2. Model

Our model named CDur is a lightweight 5-layer CRNN directly
taken from the previous work in [16].

ŷ =

∑
t ŷ

2
t∑

t ŷt
(4)

CDur subsamples the time-dimension by a factor of 4 and uses
linear-softmax [26] as its aggregation method defined in Equa-
tion (4). The frame-level output is upsampled by a non-learnable
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transformation. The model parameters of CDur can be seen in Ta-
ble 1. One of the benefits of the proposed model is its size, it only
contains around 600k parameters and has a size of around 2.7 Mb
on disk, making it a lightweight alternative to the larger baseline
model.

Layer Parameter
Block1 32 Channel, 3× 3 Kernel
L4-Sub 2 ↓ 4
Block2 128 Channel, 3× 3 Kernel
Block3 128 Channel, 3× 3 Kernel
L4-Sub 2 ↓ 4
Block4 128 Channel, 3× 3 Kernel
Block5 128 Channel, 3× 3 Kernel
L4-Sub 1 ↓ 4
Dropout 30%
BiGRU 128 Units
Linear 10 Units

LinSoft Upsample 4 ↑ 1
Output Clip-level Frame-level

Table 1: The CDur architecture used in this work. One block refers
to an initial batch normalization, then a convolution, and lastly, a
LeakyReLU (slope -0.1) activation. All convolutions use padding
in order to preserve the input size. The notation t ↑ / ↓ d repre-
sents up/down-sampling time dimension by t and the frequency di-
mension by d. L4-Sub uses L-4 Norm pooling as a downsampling
operation.

Three losses are used, one for each respective training data sub-
set. Note that we experimented with additional losses such as asym-
metric focal loss (AFL) [27], but did not observe gains in perfor-
mance.

Lsup = BCE(ŷ, y), {y, ŷ} ∈ Dweak, (5)
Lsyn = BCE(ŷt, yt), {yt, ŷt} ∈ Dsyn, (6)

Lunsup = LUDA(x) = BCE(ŷ†, ŷ) + BCE(ŷt, ŷt), x ∈ Dun. (7)

The model is optimized using the sums of all introduced losses
seen in Equation (8).

Ltot = Lsup + Lsyn + Lunsup (8)

As the default in our work use UDA for both C and F heads.
Augmentation in regards to UDA is applied on raw-wave level,
where the torchaudio1 and torch-audiomentations2 packages are
used. Specifically, we apply random Gain (in range -20, 10 db),
Polarityinversion (with probability 50%) and Time masking (maxi-
mum 2 seconds) to an input sample.

4. RESULTS

We report our results in terms of Event-F1 (E-F1) [28], Intersection-
F1 (I-F1) and the two main challenge metrics denoted as PSDS-1
and PSDS-2 [29]. Additionally we provide the d-prime d′ score for
the clip-level evaluation, since other common audio tagging scores
such as area under curve (AUC) and mean average precision (mAP)

1https://github.com/pytorch/pytorch
2https://github.com/asteroid-team/

torch-audiomentations

lack dynamic range. d′ metric represents our model’s capability to
detect the presence of an event on clip-level.

Note that for all results, no post-processing is used. The
Event-F1 score is calculated from the thresholded ŷt > 0.5 frame-
predictions.

Data d′ E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.28 22.71 49.06 15.17 33.47
+ Syn 2.23 30.39 49.63 19.01 28.12
++ Unlabel 2.47 32.11 52.14 26.87 42.19

Table 2: Baseline results using CDur training with amounts of train-
ing data. All results are an average over 5 individual runs. High-
lighted scores are the main challenge evaluation metrics. Higher is
better.

The baseline experiments using the proposed CDur model can
be seen in Table 2. The additional data synthetic data seems to de-
crease d′, which likely stems from the mismatch between the syn-
thetic and real data. With the addition of the unlabeled data how-
ever, d′ largely enhances, since the model now has access to larger
amounts of real world samples. This enhancement is then reflected
on the PSDS-1 and PSDS-2 scores, since the clip-smoothing tech-
nique’s filtering capability is now enhanced.

Data d′ E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.27 22.99 49.14 19.98 46.57
+ Syn 2.21 35.31 54.84 29.85 47.34
++ Unlabel 2.50 37.21 57.12 34.41 54.90

Table 3: Results using the proposed clip-smoothing with CDur. All
results are an average over 5 individual runs. Highlighted scores are
the main challenge evaluation metrics. Higher is better.

Our results with the proposed clip-smoothing technique can be
observed in Table 3. Comparing to our baseline, clip-smoothing
leads to a large improvement for all metrics, leading to a comparable
performance in terms of PSDS-1 and -2 against the strong baseline.

4.1. Data Augmentation

Two augmentation methods, namely SpecAug [30] and Mixup [31]
are used to enhance performance. The results can be seen in Table 4.
Adding SpecAug to our model training decreases all metrics except
PSDS-2, while the addition of SpecAug + Mixup shows improve-
ments for both PSDS-1 and PSDS-2 scores. In the following, every
experiment denoted as Aug uses SpecAug and Mixup as default.

Aug d′ E-F1 I-F1 PSDS-1 PSDS-2

Base 2.50 37.21 57.12 34.41 54.90
+ SpecAug 2.64 35.68 57.06 32.60 56.26
++ Mixup 2.60 35.76 56.01 34.59 57.11

Table 4: Results with additional data augmentation in form of
SpecAug and Mixup. All results are an average over 5 individual
runs. Highlighted scores are the main challenge evaluation metrics.
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4.2. Ensemble and submissions

Our final results and submissions to the challenge can be observed
in Table 5. The ensemble submissions named S1, S2 and S3
are frame-level averaged over the respective single models, which
are:

• Aug, which uses clip-smoothing and additional specaug +
mixup during training (see Table 4).

• Heavy uses much stronger augmentations during UDA than the
default ones. Time Masking with a maximal length of 5s as
well as a 70 % probability to apply volumne gain in range of
-20 to 20 db.

• MSE uses the mean square error criterion for UDA training
instead of the default BCE.

• WeakShift Uses an additional augmentation via shifting of the
time domain (with rollover) during UDA training. Note that
the training criterion becomes LUDA = BCE(ŷ†, ŷ).

• Sub-8 subsamples the time dimension by a factor of 8, leading
to an output resolution of 80ms instead of 40ms.

Model d′ E-F1 I-F1 PSDS-1 PSDS-2

Baseline - 40.10 76.60 34.20 52.70
Aug (A) 2.66 36.80 58.94 33.63 57.43
Heavy (B) 2.56 39.02 58.09 35.21 58.00
MSE (C) 2.46 35.08 56.69 34.24 55.07
WeakShift (D) 2.50 39.29 59.02 36.91 57.17
Sub-8 (E) 2.66 36.05 57.17 33.00 59.38
S1 (A+B+C) 2.70 40.89 59.13 37.25 61.99
S2 (S1 + D) 2.70 40.90 59.61 38.23 62.29
S3 (S2 + E) 2.75 41.06 59.71 38.13 62.98

Table 5: Performance for the best single model results and the sub-
mitted ensemble models. Best results are highlighted in bold. En-
sembles are generated by averaging the frame-level outputs of each
respective model.

Compared to the baseline, our model falls behind in terms of
Intersection-F1 and Event-F1, which is likely due to our neglect of
post-processing methods largely affecting those metrics. However,
in terms of PSDS, our model largely outperforms the baseline ap-
proach by an absolute of at least 3 and 9 points, respectively. Our
submissions to the challenge include the ensemble systems S1, S2
and S3 as well as our best performing single model (D).

5. CONCLUSION

This paper proposes our submission to the DCASE2021 Task4 chal-
lenge. Our approach uses clip-smoothing in combination with a
small parameter model to outperform the provided baseline in terms
of PSDS-1 and PSDS-2 scores. Our best single model achieves an
PSDS-1 of 36.91 and an PSDS-2 of 57.17 on the validation dataset.
Moreover, our 4-model ensemble approach achieves an PSDS-1 of
38.23 and an PSDS-2 of 62.29, significantly outperforming the chal-
lenge baseline by an absolute of 4.03 and 9.6 points respectively.
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