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ABSTRACT
In this report we present our system for the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2021 Challenge
Task 4: Sound Event Detection and Separation in Domestic Envi-
ronments. Our presented solution is an advancement of our sys-
tem used in the previous edition of the task.We use our previously
proposed forward-backward convolutional recurrent neural network
(FBCRNN) for tagging and pseudo labeling and tag-conditioned
sound event detection (SED) models which are trained using the
strong pseudo labels provided by the FBCRNN. Our advancement
over our previous model is threefold. Firstly, we introduce a strong
label loss in the objective of the FBCRNN to take advantage of
the strongly labeled synthetic data during training, which leads
to both better tagging and detection performance. Secondly, we
perform multiple iterations of self-training for both the FBCRNN
and tag-conditioned SED models. Thirdly, while we used only
tag-conditioned CNNs as our SED model in the last edition we
here explore sophisticated SED model architectures, namely, tag-
conditioned bidirectional CRNNs and tag-conditioned bidirectional
convolutional transformer neural networks (CTNNs) and combine
them. With scenario and class dependent tuning of median fil-
ter lengths for post-processing, our final SED model, consisting
of 6 submodels (2 of each architecture), is able to achieve valida-
tion poly-phonic sound event detection scores (PSDS) of 0.454 for
scenario 1 and 0.758 for scenario 2 as well as a collar-based F1-
score of 0.602 outperforming the baselines and our model from the
last edition by far. Source code will be made publicly available at
https://github.com/fgnt/pb_sed.

Index Terms— sound event detection, audio tagging, weak la-
bels, self-training

1. FORWARD-BACKWARD CRNN

The FBCRNN [1] is illustrated in Fig. 1. It consist of a shared
CNN front-end and two separate recursive classifier networks
(RNN+fully connected neural network (FCN)) with one process-
ing the audio in forward direction and the other in backward direc-
tion. Note that unlike a bidirectional RNN the two classifiers do not
exchange hidden representations and, therefore, at each frame one
classifier has only seen previous frames and the other only subse-
quent frames.

To encourage the model to output tag predictions as soon as it
has seen the event in the input, as shown in Fig. 2, we compute, at
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Figure 1: FBCRNN

each frame, the binary cross entropy (BCE) loss between the point-
wise maximum of the predictions of the two classifiers and the clip-
level (weak) label. Note, that this can be seen as multiple instance
learning (MIL) with two instances. One instance comprises the cur-
rent plus all previous frames, which has been processed by the for-
ward classifier, and the other instance comprises the current plus all
subsequent frames, which has been processed by the backward clas-
sifier. Hence, if an event is labeled positive in the clip at least one of
the classifiers has to be able to classify the event as positive, given
that the event is either present in previous or in subsequent frames or
both. This training scheme forces the two classifiers to output pre-
dictions without having processed the whole audio, which makes it
generalize to much shorter segments later on of, e.g., only a couple
of hundred milliseconds and, hence, enables SED.

We use the same architecture as in [1]. We only removed the
last pooling layer between the Conv2d and Conv1d blocks.

1.1. Strong Label Loss

As the training data of the challenge contains synthetic data which
comes with strong labels, it is desirable to make use of the strong
labels in the FBCRNN training, which we previously did not do.
If strong labels are given, we now, instead of the weak label loss,
compute a strong label BCE for both classifiers with respect to the
desired outputs shown in Fig. 2 and average the two loss terms.
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Figure 2: FBCRNN signals

1.2. Self-Training

As a large fraction of the provided data is unlabeled, we now per-
form more extensive self-training with training 8 initial FBCRNNs
on only weakly labeled real and strongly labeled synthetic data
followed by three iterations of pseudo labeling and retraining 4
FBCRNN models in each iteration.

In each iteration we generate weak pseudo labels for the com-
plete unlabeled data, where tagging thresholds are tuned on the val-
idation set to maximize the F1-score. Additionally, we perform an
boundary detection for weakly labeled and unlabeled data by fil-
tering the point-wise minimum of the two classifier signals with[
−2/N . . . −2/N 2/N . . . 2/N

]
where N is the filter

size. The class-specific filter sizes and thresholds that the output
or negative output has to exceed to detect an onset or offset bound-
ary, respectively, are tuned on the validation data such that a mini-
mum precision of 75% is achieved, when using a detection collar
of 500ms. For those events where onset and/or offset can be de-
tected, the strong label loss from Sec. 1.1 is used in the following
FBCRNN retraining. The different signals are illustrated in Fig. 2.

Finally, we use both the FBCRNNs after the second and third
iteration to separately perform strong pseudo labeling of the weakly
labeled and unlabeled data giving us two different sets of strong
pseudo labels. To achieve SED with the FBCRNNs, it is applied to
a small context of a couple of 100ms around each frame to gener-
ate an SED score at that frame.Here, class specific context lengths,
median filter lengths and detection thresholds are tuned on the val-
idation set to maximize the frame-based F1-score. The obtained
strong pseudo labels allow us to train SED systems in a strongly
supervised manner as described in the following.

For tag-conditioning at test-time we use all of the 8 models
jointly to perform audio tagging.

2. TAG-CONDITIONED SED

As in the previous edition our SED model uses tag-conditioning [1],
which means we also input the predicted tags from the FBCRNN
in addition to the audio input features. While in the last edition
we only used a tag-conditioned CNN, we now also train a tag-
conditioned bidirectional CRNN and tag-conditioned bidirectional
CTNN.

Here, we use similar architectures as in the FBCRNN with,
however, only one classifier back-end. For the pure CNN the
CNN1d and RNN Blocks are removed. In the bidirectional CRNN,
a bidirectional RNN instead of unidirectional RNNs as in the
FBCRNN. For the CTNN a Transformer Encoder [2] is used instead
of an RNN, where we use 3 Transformer blocks each with 10 heads
and 32-dimensional embeddings in each head. Also an positional
encoding is added at the Transformer input.

Tag-conditioning is performed by concatenating a 10-
dimensional multi-hot encoding of the tags with the inputs of the
CNN2d, CNN1d, RNN/Tranformer, and FCN Blocks. For the
CNN1d, RNN and FCN the encoding is concatenated along chan-
nel/feature dimension at each frame. For the CNN2d the encoding is
concatenated along channel dimension at each time-frequency bin.

The models are trained with standard strong label BCE loss. For
each set of the 2 strong pseudo label sets we train each of the model
architectures giving us 3 models for each of the 2 strong pseudo
label sets. For each of the strong pseudo label sets, we perform one
iteration of self-training, i.e., generating new strong pseudo labels
using the 3 models of that particular set followed by retraining the 3
architectures. Finally, we combine all the models from the two sets
of pseudo labels into our final ensemble, i.e., 6 models in total.

3. IMPLEMENTATION DETAILS

3.1. Data Preparation/Augmentation

Initially, waveforms are resampled to 16 kHz and normalized
x(t) = s(t)/max(|s(t)|) to be within the range of -1 and 1. As our
systems input we then extract aM=128-dimensional log-mel spec-
trogram using a short-time Fourier transform (STFT) with frame-
length of 60ms and hop-size of 20ms. Each mel-bin is globally
normalized to zero mean and unit variance.

At training time we perform various data augmentations, which
is similar to what we already used previously [3, 1] and is described
in the following.

Scaling: We randomly scale the waveform with a scale weight
sampled out of a Log Truncated Standard Normal distribution with
truncation at log(3).

Shifted superposition: We randomly superpose two audios as
x′i(t) = xi(t) + xj(t − τ) with a random shift τ sampled uni-
formly such that the superposed signal is not longer than 15 s, i.e.,
if we, e.g., superpose 2 signals each having a length of 10 s, the
shift is uniformly sampled between -5 s and 5 s. Labels are super-
posed accordingly and clipped at 1 to retain binary labels. We ap-
ply superposition with a probability of 2/3. Due to the similarity
to mixup [4], we previously referred to this augmentation also as
mixup. However, as we do not interpolate the signals, calling it
superposition is more accurate.

Frequency warping: We randomly warp the center frequen-
cies of the mel filter bank similar to vocal tract length perturbation
(VTLP) [5]. The boundary frequency is sampled from a Truncated
Exponential distribution with σ = M/2 and truncation at 5 ·M .
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Table 1: Results of submitted SED models on validation set.
Metric Baseline Single Ensemble

collar-based F1 0.401 0.591 0.602
PSD1 0.342 0.429 0.454
PSD2 0.527 0.748 0.758

The warping factor is sampled from a Log Truncated Normal dis-
tribution with µ = 0, σ = 0.8 and truncation at log(1.3) ≈ 0.26.
Note that the boundary frequency can fall above M , in which case
the whole spectrogram is stretched or squeezed and filled with ze-
ros.

Frequency-/Time-Masking: As in SpecAugment [6], we apply
1 time- and 1 frequency mask for each input with random locations
and widths. The locations are uniformly sampled along the time-
and frequency axes, respectively. Widths are uniformly sampled
between 0 and min(1.4 s, 0.2T ) for the time mask, where T is the
length of the audio, or between 0 and 20 bins for the frequency
mask.

Gaussian Noise: We add Gaussian noise to the final feature map
with its standard deviation being uniformly sampled between 0 and
0.2.

3.2. Training

Training is performed for 40 k update steps with a batch size of
16. To balance the different data sets we repeat certain data sets
in one epoch multiple time. Here, one epoch consists of 20 times
the weakly labeled data, 2 times pseudo labeled unlabeled data (if
used), 1 time synthetic data from this edition (synthetic21) and 2
times synthetic data from last edition (synthetic20). This sums up
to ≈ 31 k + 28 k + 10 k + 5 k audio clips in one epoch. We fur-
ther ensure that each batch includes at least 6 clips from the weakly
labeled data, 2 clips from synthetic21 and 1 clip from synthetic20
as well as a each event class at least 1 time. We employ Adam [7]
for optimization with a learning rate of 5 · 10−4, with a ramp up
during the first 1 k update steps and a reduction to 10−4 after 20 k
update steps. We perform validation every 1 k update steps and
choose the checkpoint with best validation performance in terms of
(frame-based) F1-score as the final model.

4. RESULTS

In Table 1 we report the results of our submitted systems which
are our final ensemble consisting of 8 FBCRNNs for audio tagging
followed by 6 tag-conditioned SED models and a single model sys-
tem with only 1 FBCRNN for audio tagging followed by 1 SED
model. For the single model system we have chosen the models
that achieved best tagging / SED performance on the validation
set, which has been one of the bidirectional CRNNs for the SED.
We performed a class- and metric-specific tuning of median filter
lengths for post processing yielding two submissions for each of
the systems. For collar-based F1-score we also tuned the decision
threshold to give best performance on the validation set.

The 5min long audio files from the evaluation set have been
processed in chunks of 10 s with an overlap of 2 s. Predictions have
then been concatenated afterwards, where the first and last second
of a chunk have been dropped in case of an overlap.

Only two days after challenge submission deadline we recog-
nized, that significantly higher performance can be achieved for sce-

Table 2: Results of FBCRNN-based SED on validation set.
Metric Single Ensemble

collar-based F1 0.511 0.526
PSD1 0.382 0.404
PSD2 0.793 0.812

nario 2 when using FBCRNN-based SED with larger frame context
lengths and median filter lengths. Table 2 shows FBCRNN-based
performance with class- and metric-specific frame context lengths
and median filter lengths up to 4 s.
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