
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

AN AUTOMATED AUDIO CAPTIONING APPROACH UTILISING A
RESNET-BASED ENCODER

Technical Report

Alexander Gebhard1, Andreas Triantafyllopoulos1,2, Alice Baird1, Björn Schuller1,2,3

1EIHW – Chair of Embedded Intelligence for Healthcare and Wellbeing,
University of Augsburg, Augsburg, Germany

2audEERING GmbH, Gilching, Germany
3GLAM – Group on Language, Audio, and Music, Imperial College, London, UK

ABSTRACT

In this report, we present our submission system to TASK6 of the
DCASE2021 Challenge. The main module is based on the baseline
architecture for the automated audio captioning (AAC) task, which
was provided by the challenge organisers. We exchange the encoder
part of the baseline architecture and replace it by a Residual Neu-
ral Network (ResNet)-18 encoder adapted to the AAC task. Results
from our proposed architecture have shown an average increase of
35.7% over the baseline system, reaching a BLEU1 score of 0.449
on the development set, demonstrating the effectiveness of the pro-
posed encoder for this task.

Index Terms— automated audio captioning, DCASE Chal-
lenge

1. INTRODUCTION

Automatic captioning is well established in the video domain, but is
still relatively new in the field of intelligent audio research [1]. Cap-
tioning systems in the video domain have been proven useful for
several applications, e. g., accessibility [2] or vision-based security
systems [3]. Automated audio captioning (AAC) has recently begun
to gain traction in the computer audition community as well [4], par-
ticularly since the 2020 DCASE challenge where the task was first
introduced [5, 6]. In a nutshell, AAC is the process of automatically
generating textual descriptions of an audio scene [7].

In this contribution, we present an encoder-decoder architecture
based on the DCASE Task6 baseline system. The main adaption for
our proposed architecture is the substitution of the Recurrent Neu-
ral Network (RNN)-based encoder with a Residual Neural Network
(ResNet)-18 Convolutional Neural Network (CNN) one. The main
motivation to include ResNet-18 for the task of AAC in the architec-
ture is its strong performance in video-captioning [8] and the robust
results obtained in recent audio-domain studies [9, 10], as well as
multimodal approaches [11].

This report is organised as follows; firstly, in Section 2 and Sec-
tion 3, we detail the Clotho-v2.1 data and features used for our ex-
periments. We then give full detail of our proposed architecture for
the task of AAC in Section 4. Subsequently, we present our experi-
ments and results on this task in Section 5. Finally, we conclude our
findings, and suggest future work avenues for the proposed system
in Section 6.

2. DATASET

The dataset used in this work is the official DCASE2021 AAC
dataset, namely CLOTHO-V2.1, which is an extension of the orig-
inal CLOTHO-V1 [12]. The dataset consists of audio samples with
15 to 30 seconds duration, each audio sample having five captions
of eight to 20 words in length. In total, there are 6 974 audio sam-
ples with 34 870 captions in the full CLOTHO dataset, considering
both versions. CLOTHO-V2.1 is divided into four splits: develop-
ment, validation, evaluation, and testing. There are audio samples
for all four splits, however, for the purposes of the challenge, the
captions are withheld for the testing split. To avoid possible depen-
dency on particular words, it is ensured that no word appears in the
evaluation, validation, or testing split which is not part of the devel-
opment split. In most of the cases, the words are also proportionally
distributed among the splits, with 55 % in the development set and
15 % in each of the three other sets.

Due to time constraints and since the baseline system was still
aligned with CLOTHO-V1, we had to exclude the validation split
and could only use the development, evaluation, and testing splits
for our approach. In regard to this, the development split was used
as our training set and the evaluation set was utilised to measure
the performance of the network and calculate the metrics, such that
we could compare the results with the baseline. That is, the results
are reported on the official Clotho v2.1 evaluation split, which is
referred to as development-test split by the challenge organisers.
Finally, the testing set of Clotho was used to predict the captions
for the challenge submission.

Table 1 provides a short overview of the different naming con-
ventions of the data splits and displays the amount of files which
were available to the authors of this report in each data split.

3. FEATURES

The model is trained on audio data with a duration of 15–
30 seconds. All audio files are in wav format, are re-sampled (for
consistency) to 44.1 kHz, 16-bit, and converted to MONO during
the loading process of the architecture. For feature extraction, we
utilise the function provided by the baseline system, extracting log-
Mel spectrograms. The features are extracted by using a Han-
ning window function with a window size of 23 ms (1 024 sam-
ples) and 50 % overlap (512 samples). From each frame, we ex-
tract nmel = 64 Log-Mel bands. The extracted audio features are
then transformed into a matrix X = [x1, x2, ..., xT ], where T is



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

CLOTHO DCASE
∑

development development-training 3 839
validation development-validation 1 045
evaluation development-testing 1 045

testing evaluation 1 043

Table 1: Naming conventions of the data splits w. r. t. the AAC task
as well as total (

∑
) audio samples used for the current experiments

w. r. t. each data split.

the number of frames that the input audio data is divided into and
xt ∈ R64 is a vector containing the log-Mel bands in frame t. These
feature matrices are the input to the network. Since the duration
of the audio data varies between 15–30 seconds, the features are
padded with zeros at the front, such that all the input audio features
sequences in a batch have the same amount of vectors. The output
word sequences are padded with <EOS> tokens at the end, so all
output sequences will have the same amount of words.

4. ARCHITECTURE

The goal for the proposed system is to take an audio file of 44.1 kHz
sampling frequency as an input and create a caption for it (i. e., a
textual description).

The proposed architecture in this report is an adaptation of the
baseline system for the AAC task, which is a sequence-to-sequence
architecture and consists of an encoder and a decoder. The original
baseline encoder consists of three bi-directional Gated Recurrent
Units (GRUs) and outputs the summary of the input sequence of
features. However, our encoder does not use any RNNs at all, and
is a solely CNN-based approach, since it is an adaptation of the
ResNet-18 architecture proposed in [13]. The decoder part remains
the same as in the baseline system, i. e., consists of one GRU and
one linear layer, which outputs the probability for each of the unique
words.

Our adjustments to the ResNet-based encoder are as follows:
we exclude the last two layers, i. e., the final dense layer of the
ResNet, as well as the preceding average pooling layer, and replace
this with our own linear layer which has an input dimensionality of
1 024 and an output dimensionality of 512. Thus, it transforms the
extracted features such that it can be fed to the GRU, which is the
first layer of the decoder and has an input dimensionality of 512.
The output of the GRU is then handed over to the classifier (a lin-
ear layer), in order to obtain the probability for each of the unique
words.

The other ResNet-layers of our encoder are adopted as de-
scribed in the original paper from He et al. [13]. The first con-
volutional layer applies a 2D convolution over the input features
with 1 input channel in our case, using 64 filters with a kernel size
of (7 × 7) and a stride of (2 × 2); the utilised activation function
being rectified linear unit (ReLU). Afterwards Batch Normalisation
(BN) and MaxPooling are applied. This is followed by the big four
convolutional blocks of the ResNet-18 architecture and finally the
linear layer. For the structure of the original ResNet-architecture,
please have a look at the original paper of He et al. in [13]. In Fig-
ure 1, you can see an overview scheme of the proposed network.

ResNet-
Adaptation

GRU-
Layer

a b c d e

Predictions

Encoder Decoder

Figure 1: An overview of the proposed pipeline. (a) The log-Mel
spectrogram of an audio file serves as input to the network, (b) the
adapted ResNet-architecture is used for feature extraction, (c) the
linear layer transforms the features for the decoder, (d) the GRU
layer creates an output for each time step, and (e) the linear layer
generates predictions of the unique words. The encoder comprises
(b) and (c), while (d) and (e) form the decoder part.

Metrics Baseline Proposed System % Increase

BLEU1 .378 .449 18.8
BLEU2 .119 .167 40.3
BLEU3 .050 .068 36.0
BLEU4 .017 .029 70.6
ROUGEL .263 .284 8.0
METEOR .078 .097 24.4
CIDEr .075 .098 30.6
SPICE .028 .043 53.6
SPIDEr .051 .071 39.2

µ - - 35.7

Table 2: Results on the development-test (evaluation) for the
DCASE2021 AAC Dataset. Reporting all the baseline metrics pro-
vided by the challenge organisers, as well as the percentage (%) of
increase and the mean (µ) increase across all metrics.

5. EXPERIMENTS

5.1. Training

The model is trained for 300 epochs with a categorical cross-
entropy loss, and the best model is selected based on the training
loss. We use a batch size of 16 and a learning rate of 0.0001 with
the Adam optimiser [14]. We use gradient clipping, similar to Tran
et al. in [15], such that the 2-norm of the gradients does not exceed
the value of 1.

5.2. Results

Table 2 shows the results of our approach compared to the baseline
system. As can be inferred from the table, every score metric was
increased. Therefore, it appears that the ResNet encoder extracts
useful features from the spectrograms which are better suited
than the features extracted by the multi-layer GRU of the baseline
encoder. This suggests that ResNet-based CNN encoders are better
suited to this task and should be further explored as follow-up work.

When looking at the different scores obtained by this system,
it is noticeable that the percentage increase was the highest for
the BLEU4 score. Additionally, the BLEU2 and BLEU3 score in-
creased considerably more than the BLEU1 norm, which is a robust
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indication that our approach improves on the main task for produc-
ing sequences of words, occurring within a given window with a
window size of 2 - 4 words. However, since the BLEU1 score was
also increased noticeably, the number of predicted candidate words
which occur in the reference caption was boosted in general.
The least increase could be achieved for the ROUGEL score, which
is a Longest Common Subsequence (LCS) based statistics. That
is, the natural sentence level structure of long cooccuring n-gram
sequences was improved, but not substantially. However, the re-
maining two n-gram based scores METEOR and CIDEr did show
an improvement, suggesting that the predicted captions were syn-
tactically enhanced.
Moreover, the non n-gram based score SPICE which takes the se-
mantic structure of a caption into account was increased as well,
which indicates that also the meaning of the predicted captions was
improved. This would mean that both syntax and semantics of the
predicted captions have been boosted, something also affirmed by
the increased SPIDEr score, which considers both semantics and
syntax, respectively.

6. CONCLUSION

The current work investigates the use of a ResNet-based encoder
for the task of AAC. The baseline fully-RNN system is thus adapted
to a hybrid Convolutional Recurrent Neural Network (CRNN) ap-
proach, which shows better results. The performance of the method
can be further improved through use of higher-capacity ResNet en-
coders, potentially pre-trained on different tasks, state-of-the-art
data augmentation approaches such as SpecAugment [16], and fea-
tures better suited to intelligent audio analysis tasks such as openL3
[17, 18], DeepSpectrum [19], or auDeep [20].
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