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ABSTRACT
This report illustrates a framework for the DCASE2021 task4 -
Sound Event Detection. The proposed framework is built on the
pseudo-labeling method widely applied for semi-supervised learn-
ing(SSL) tasks. The proposed method synthesizes weak pseudo-
labels for the large amount of unlabeled data by utilizing the
model’s predictions on weakly augmented spectrograms. Weak
pseudo-labels are then used as supervision for strongly augmented
spectrograms of the same sample. Along to this main contribu-
tion, this work introduces data augmentation techniques including
random frequency masking and time shifting, training techniques
such as class-specific weighted loss, and model ensemble tech-
niques. Experimental results demonstrate that the proposed method
achieves PSDS of 0.407/0.653(scenario1/scenario2) on the valida-
tion set, which presents superior performance against the baseline
score 0.342/0.527.

Index Terms— Sound event detection, Semi-supervised learn-
ing, Pseudo-label method

1. INTRODUCTION

The technical report describes solution systems for DCASE2021
Challenge Task4: sound event detection(SED) and separation in
domestic environments. The target of this task is to train a model
capable of detecting specific domestic sound events with weakly
labeled, unlabeled real-world data and synthetic data which has
strong labels. Our submission systems basically follow the baseline
architecture[1], while considering the characteristics of evaluation
metrics, we adopt several techniques to improve the performance:

• improved pseudo-labeling methods;
• data augmentation techniques, for instance specAug[2] and

time shift[3];
• class-specific weighted loss;
• post-processing refinement;
• model ensemble.

We carry out evaluation experiments on DCASE2021 task4 val-
idation set to verify the effectiveness of those mentioned above.
The result demonstrates that our submission greatly outperform the
baseline system, achieving the best PSDS-scenario1 of 0.407 and
PSDS-scenario2 of 0.653.

2. PROPOSED METHOD

The CRNN[4] architecture has previously achieved great perfor-
mance on SED tasks. With the effective feature extraction ability of

CNN and strong time-dependency modeling ability of RNN, CRNN
combines both of them to get a higher promotion which is why we
choose it as our basic system. Our network is mainly the same as
that of baseline system.

2.1. Data preparation

We down-sample the original audio to 16kHz and generate 128-
dimensional log-Mel filter-banks. The window size and hop size
are 2048 and 256 respectively. All the training audio are aligned to
625 frames which corresponds to 10 seconds. Finally, features are
normalized along the whole training set before sent into the network
as input. For the sake of robustness, we diversify training data by
utilizing several data augmentation methods such as mixup[5], time
shift and specAug.

2.2. Semi-supervised method

Due to the large mount of unlabeled data, semi-supervised strategy
is essential. Mean-teacher[6] is widely applied in previous systems
and achieve obvious effect which is also included in our systems.
In addition, we introduce an improved pseudo-labeling method en-
lightened by Fixmatch[7] of image classification task. In short, the
total loss function consists of two parts, a supervised loss applied to
labeled data and an unsupervised loss. The latter combines pseudo-
labeling and consistency regularization in the meantime. Weakly-
augmented spectrograms are fed in the model to generate pseudo la-
bels against which strongly-augmented version predictions are used
to enforce entropy loss.

2.3. Training techniques

As we analyzed, the PSDS[8] metrics of two scenarios both suffer
greatly from instability across classes. So we attempt to assign di-
versified weights for the loss of each class, which eventually boost
the performance a little. Also, we find that post median filtering
would in certain extent harm the performance mainly due to the na-
ture of metrics that continuity of the frames output doesn’t matter.

2.4. Model ensemble

To utilize advantages of different models, we select several top sys-
tems and average the raw outputs before post-processing. Every
model is trained with different training settings in order to fuse
unique generalizing ability.
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3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We conduct experimental evaluations on DCASE2021 Task4
dataset[9]. The dataset contains 1578 audio clips with weak label,
10000 synthesized audio clips using baseline script and 14412 un-
labeled audio clips. We choose AdamW optimizer with learning
rate of 0.001. The model is training for 36k steps and the beginning
2.5k steps are for warming up[10]. For mean-teacher, the batch size
is 128 consisting of 32 synthesized, 32 weakly labeled and 64 un-
labeled data. For pseudo labeling, unlabeled data need to be of a
higher percentage, which we put 32, 32, 128, respectively in a total
batch of 192.

3.2. Experimental results

3.2.1. Effects of SSL methods

First, we investigate the merits of different semi-supervised learn-
ing strategies. By keeping all the same with baseline except replac-
ing mean-teacher with improved pseudo labeling, the metrics rise
higher under both scenarios as Table 1 shows.

Method PSDS scenario1 PSDS scenario2

baseline 0.342 0.527
i-pseudo-labeling 0.360 0.553

Table 1: Effects of SSL methods

3.2.2. Effects of data augmentation

Next, we investigate the effects of data augmentation techniques .
On the basis of baseline system, specAug and time shift are respec-
tively enforced. Table 2 shows the improvement.

Method PSDS scenario1 PSDS scenario2

baseline 0.342 0.527
+specAug 0.358 0.550
+time shift 0.358 0.563

+specAug+time shift 0.368 0.576

Table 2: Effects of data augmentation

3.2.3. Effects of post-processing strategies

Next, we attempt to study the effects of post-processing. Using
improved pseudo-labeling model, with respect to post median fil-
ter, we consider 3 situations: global length of baseline, class-wise
length counted from training set and without post-processing. It
turns out that filtering may even hurt the system performance as
Table 3 shows.

3.2.4. Effects of model ensemble

Finally, we attempt to study the effects of model ensemble. Table
4 shows the results of best single mean-teacher model, best single
improved pseudo-label model and best ensemble model. The con-
tribution of ensemble is quite obvious.

Method PSDS scenario1 PSDS scenario2

global length 0.367 0.599
class-wise length 0.381 0.614
without filtering 0.394 0.624

Table 3: Effects of post-processing strategiese

Method PSDS scenario1 PSDS scenario2

mean-teacher 0.382 0.619
i-pseudo-labeling 0.394 0.624
model ensemble 0.407 0.653

Table 4: Effects of model ensemble

4. CONCLUSION

In this report, we propose and describe a submission system for
DCASE2021 task4. The system involves an improved pseudo-
labeling method which also combines regularization consistency.
Also, training techniques such as class-specific weighted loss and
post-processing filtering strategy are introduced in terms of the
nature of evaluation metrics. Extensive experiments and ablation
study demonstrate the feasibility of our methods.
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