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ABSTRACT

In this technical report we present our submissions for
DCASE 2021 Challenge Task 1A. For the low-complexity model,
we used both a MobileNetV2-based model and a ResNet-based
model with reduced number of layers and trained it using ArcFace
metric learning. To increase the accuracy, we used test-time aug-
mentation (TTA) during inference. On the development dataset, our
models attain an ASC accuracy of around 54-55%, while having
less than 128 kB of total parameters'.

Index Terms— acoustic scene classification, MobileNetV2,
ResNet, ArcFace, test-time augmentation

1. INTRODUCTION

Acoustic scene classification (ASC) is a problem where the goal
is to identify the environment using sound recordings and assign a
label from a set of given classes. ASC has been a popular topic for
decades, and the Detection and Classification of Acoustic Scenes
and Events (DCASE) community provides a challenge to encourage
sound scene research.

There are two different subtasks for DCASE 2021 challenge
Task 1. We focused only on subtask A, which goal is to give a
low-complexity, ten-class ASC system with size limit of 128 kB
(131072 bytes) of trainable, nonzero parameters [1].

The development dataset for the task, named TAU Ur-
ban Acoustic Scenes 2020 Mobile development dataset contains
64 hours of recordings from 10 European cities in 10 different
acoustic scenes [2]. The samples were recorded using multiple de-
vices, including 3 real devices (marked as A, B, C). Additionally,
synthetic data for 6 simulated devices (S1-S6) was created based
on the original recordings. The evaluation dataset contains addi-
tional samples from 2 more European cities, one new real device
(marked as D) and 3 new simulated devices (S7-S9).

The development dataset is provided with a training/test split.
70% of the samples from each device is included in the training
set, and 30% is allocated for testing. Some devices (S4-S6) appear
only in the test subset. The training set is already balanced by the
organizers in terms of scene classes and recording devices.

In our submission we used TensorFlow 2.1.0 to implement the
neural network [3].
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2. FEATURE EXTRACTION

The DCASE 2021 dataset consists of 10 second long recordings of
10 different acoustic scenes, recorded with 44.1 kHz sampling fre-
quency. As a feature extraction layer, we used a log-mel filter bank
with 128 Mel frequency bins. The recordings are transformed using
a 2048 sample long short-time Fourier transform (STFT) window
with frame shift of 1024 samples. The spectra are then mapped to
the Mel scale using the HTK formula, and the natural logarithm of
each value is calculated. After this, the features are scaled to [0, 1].
After the scaling, features are decomposed to harmonic and percus-
sive components, and concatenated to the Mel spectrogram as new
channels. Thus, the input tensor size is 128 x 431 x 3.

The feature extraction was implemented using the 1ibrosa
library [4].

Because the overwhelming majority of samples were recorded
using device A, we applied additional balancing to the train split of
the dataset. We also noticed that the recordings were imbalanced
not only in terms of devices, but in terms of cities too. Therefore, in
order to balance, we used subsampling on the devices and cities: at
least 7 samples were recorded in each city using all of the devices,
so we randomly sampled 7 recordings from 10 cities, 6 devices and
10 scenes, which resulted in 4200 training samples.

3. AUGMENTATION

In order to reduce overfitting, several augmentation methods were
used. These can be categorized as time-domain and feature-domain
augmentations.

The following list contains the time-domain approaches. These
operate on the audio recordings and generate additional features in
our experiments:

e Additive noise: For each sample in the training set, Gaussian
noise (1 = 0, 0 = 1) is added.

e Random pitch shift: Each traing sample has its pitch shifted
randomly between [— % , %] octaves, according to a uniform dis-
tribution.

e Time stretching: Samples were randomly either sped up or
slowed down. The stretching coefficients were chosen uni-
formly in the interval [0.5, 2].

e Random volume change: The volume of the recording is
changed by a factor chose from the interval [—10 dB, +10 dB]
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uniformly. The volume changing curves (constant, fade in,
sine, cosine) were selected randomly for each sample.

Additionally, feature-based methods were used too. These were
implemented in the data generator:

e Mixup: Proposed in [5], mixup has been commonly used in
previous DCASE challenge submissions too [6-8]. We used
alpha value of 0.4 as mixup parameter. In our implementa-
tion, mixup is performed by generating two data batches and
randomly mixing both the features and the labels from those
batches.

e Spectrum augmentation: Introduced in [9], spectrum augmen-
tation is a technique where parts of input features are masked,
forcing the network to learn more general details of the sam-
ples. In our experiments, we masked 10% of the input features
along the time and frequency axis.

e Random temporal shuffle: Used previously in [10], random
temporal shuffle divides the input feature map into 2 parts
along the time axis and randomly shuffles them.

4. TEST-TIME AUGMENTATION

Test-time augmentation (TTA) is commonly used in image classifi-
cation in order to increase the accuracy of a model predictions [11].
Contrary to data augmentations during training, TTA is applied dur-
ing inference.

The main idea of TTA is that by making several randomly aug-
mented copies of the input sample, then averaging the outputs for
the augmented samples, more accurate predictions can be made
without changing the model.

In our submissions, we used all the time-domain augmentations
described in Section 3, as well as random temporal shuffle. The
augmentations were carried out 10 times per sample. Also, in order
to scale the output predictions to [0, 1], softmax was applied after
averaging.

5. ARCHITECTURES

5.1. Small MobileNetV2 model

In our experiments, we used a model based on MobileNetV2 ar-
chitecture [12], but compared to the original, ours has a reduced
number of layers. The block structure can be found in Table 1.

The main goal of MobileNetV2 is to give a compact model that
can fit the limitations of mobile devices, yet have considerable accu-
racy on classification tasks. The model introduced in [12] is still too
big for submission for DCASE 2021 Task 1A, therefore we reduced
the number of layers according to Table 1. Another difference is
that we used Leaky ReLU activation with o« = 0.01.

In order to fit the size limit, we quantized the parameters of
the model to floatl6, thus our TensorFlow Lite model with
47,939 parameters weights under 93.6 kB (95, 878 bytes).

5.2. CP-ResNet model

We used the receptive-field regularized ResNet model introduced
in [13] and used in previous DCASE challenges [7, 8]. We used
p = 4 receptive field regularization and for the small model size,
we reduced the residual block channel sizes to 16. On top of
the CP-ResNet backbone, the same top layer is added as to the
MobileNetV2 (see Table 1 layers 7-13).
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This model has 58,266 parameters, which were quantized
to floatl6 in order to fit the size limit of the task. The
quantized TensorFlow Lite model weights just under 113.8 kB
(116, 532 bytes).

6. EXPERIMENTS

A key element in our submission is the usage of metric learning. We
used Additive Angular Margin Loss (ArcFace) [14] in our training
workflow. The main idea behind ArcFace is to force the network
to learn a metric, which maps the input samples to the surface of
a hypersphere. Class separability is ensured by adding a margin
around each of the class manifolds.

Training using ArcFace is accomplished by adding a batch nor-
malization and a fully connected layer on top of the network body.
The number of perceptrons in the fully connected layer corresponds
to the dimension of the hypersphere where the loss is calculated, in
other words, it’s called embedding space. On top of these, the Ar-
cFace header should be added and trained using categorical cross-
entropy. After training, the ArcFace header should be removed and
replaced with a fully connected layer, only which should be trained.

ArcFace itself has 2 hyperparameters: scaling factor (s) and an-
gular margin (m). Additionally, we found that the dimension of the
embedding space has an impact on numerical performance: prelim-
inary experiments showed that increasing the embedding dimension
over 64 results in no significant additional gain in accuracy.

We found that ArcFace is sensitive to the initial values of the
network, and is prone to instability if the model is not close enough
to the optimum. In order to avoid this instability, we used the fol-
lowing training workflow:

1. First, we pre-trained our model using focal loss [15] as the
loss function, and using all augmentations described in sec-
tion 3. Learning rates were set using a cosine-decay-restart
scheduler between 10™2 and 10~ 3. Focal loss parameters
were chosen as « = 1 and v = 2. This training step was run
for 200 epochs.

2. Secondly, we cut the last 3 layers off the top of our model,
froze the weights, then added the ArcFace header for train-
ing. In this stage, we trained the ArcFace header for
10 epochs, using the full training split of the dataset, without
any sort of augmentation.

# Block Configuration

1 Input 128 x 431 x 3

2 Convolution (3 x 3), with (2 x 2) strides
3 | Inverted residual block | Channel expansion to 25

4 | Inverted residual block | Channel expansion to 32

5 | Inverted residual block | Channel expansion to 38

6 Convolution (1 x 1), Ch. expansion to 56
7 AvgPool2D (2 x 2) pooling

8 BatchNormalization

9 Dropout 10%

10 Dense 64 output taps

11 BatchNormalization

12 Dense 10 output taps

13 Activation SoftMax

Table 1: Block structure of our reduced MobileNetV2 model.
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3. Thirdly, we unfroze all the weights of the model and trained
for 200 epochs.

4. Lastly, we removed the ArcFace header, froze the model
weights and re-added the last 3 layers. In order to train
them, we balanced the dataset and used all of the augmen-
tations. In this training stage, we used exponential decay
learning rate scheduler, with initial LR of 10~ and decay
rate of 3.33 x 10~° for 30 epochs.

In our experiments, we used ArcFace parameters s = 30 and
m = 0.5. We chose batch size as 24 and used SGD optimizer
without momentum. We saved the model at the end of each epoch
and chose the one with the highest accuracy on the test split to work
with on subsequent training phases.

7. SUBMISSION SUMMARY

7.1. Submission 1: MobileNetV2 with focal loss (R_MNv2_fl)

We trained the reduced MobileNetV2 model using focal loss,
subsampling-based balancing, according to the first step of the
workflow described in Section 6. We found that in this case, TTA
brings no significant increase in accuracy, but increases the log-loss
of the model, therefore TTA was not utilized in the evaluation phase.

7.2. Submission 2: MobileNetV2 with ArcFace (R_MNv2_af)

In this submission, we trained the reduced MobileNetV2 model us-
ing ArcFace, all according to the workflow described in Section 6.
Evaluation results were calculated using TTA.

7.3. Submission 3: CP-ResNet with focal loss (CPRes_fl)

We used the CP-ResNet model and — similarly to Submission 1 —
we trained it using focal loss, subsampling-based balancing, all ac-
cording to the first step described in Section 6. During evaluation,
test-time augmentations were not used.

7.4. Submission 4: CP-ResNet with ArcFace (CPRes_af)

We refined the model of Submission 3 using ArcFace, with margin
chosen as m = 0.35. In the evaluation phase, we utilized TTA for
increased accuracy.

8. RESULTS AND DISCUSSION

The accuracies of the submitted systems can be seen in Table 2. For
reference, the baseline system provided by the challenge organiz-
ers is presented too. Overall, compared to the baseline, all of our
submitted models have higher accuracy on the test split of the de-
velopment dataset. Although, the accuracy of some classes (metro
and shopping mall) are lower on our models.

The confusion matrix of the ArcFace-trained MobileNetV2
(R_MNv2_af) model can be found in Table 3. For most of the
scenes, there are specific classes which are confused in a higher
percentage than others. For example, busses, trams and metros are
often confused. Similarly, airports and shopping malls are also of-
ten misclassified to each other. Listening to the recordings of such
scenes, we realized that classification is not trivial for human listen-
ers either.

The device-wise classification accuracy of the same model can
be found in Table 4. Generally, it can be said that accuracies on
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Table 2: Scene classification accuracy comparison between sys-
tems. The values are percentages.
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Figure 1: Training MobileNetV2 with ArcFace (R_MNv2_af): sig-
nificantly overfitting the training data. Note that because of the ad-
ditional margin, the accuracies here do not reflect the final accuracy
of the network.

unseen devices are lower than on devices used for training. Addi-
tionally, in most cases, our model performs better at samples from
real recording devices, compared to simulated ones.

It should be mentioned, that test-time augmentation increases
both the accuracy and the loss too. For example, evaluating our
ArcFace-trained MobileNetV2 (R_MNv2_af) model without TTA,
the loss is 1.258. In contrast, using TTA on the same system results
in a loss value of 2.021.

Despite the small model size, ArcFace still manages to overfit
the training dataset (see Figure 1), which suggest that there is still
room for improvement for this model structure.
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Table 3: Confusion matrix of ArcFace-trained MobileNetV2 (R_MNv2_af) model on the test split of the development set. The values are

percentages and are normed.
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A 78.8 | 87.9 | 75.7 | 545 | 758 | 60.6 | 60.6 | 63.6 | 90.9 | 66.7
B 719 | 545 | 51.5 | 333 | 576 | 242 | 455 | 51.5 | 879 | 69.7
C 727 | 81.8 | 66.7 | 39.4 | 81.8 | 51.5 | 33.3 | 545 | 87.9 | 46.9
S1 | 48.5 | 60.8 | 455 | 545 | 66.7 | 27.3 | 485 | 455 | 939 | 57.6
S2 | 48,5 | 758 | 545 | 424 | 545 | 21.2 | 455 | 424 | 758 | 51.5
S3 | 57.6 | 60.6 | 60.6 | 60.6 | 66.7 | 152 | 48.5 | 36.2 | 78.8 | 78.8
S4 | 21.2 | 51.5 | 485 | 485 | 545 | 303 | 545 | 333 | 939 | 545
S5 | 424 | 485 | 51.5 | 394 | 727 | 242 | 66.7 | 303 | 84.8 | 48.5
S6 | 364 | 48.5 | 182 | 48.5 | 30.3 9.1 45.5 | 21.2 | 69.7 | 57.6

Table 4: Device-wise scene classification accuracies of our ArcFace-trained MobileNetV2 (R_MNv2_af) model. The values are percentages.

9. CONCLUSION

In this technical report,

we presented our submissions for
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