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ABSTRACT

Sound event localization and detection (SELD) is a multi-task learn-
ing problem that aims to detect different audio events and esti-
mate their corresponding locations. All of the previously proposed
SELD systems were based on human-extracted features such as
Mel-spectrograms to make the prediction, which required specific
prior knowledge in acoustics. In this report, we investigate the pos-
sibility to apply representation learning directly to the raw audio and
propose an end-to-end sample-level SELD framework. To improve
generalization, we applied three data augmentation tricks: sound
field rotation, time masking and random audio equalization. The
proposed system is evaluated on the TAU-NIGENS Spatial Sound
Events 2021 development dataset. The experimental results will be
submitted to DCASE 2021 challenge task 3.

Index Terms— Sound event localization and detection, end-to-
end, raw audio, time domain, deep learning

1. INTRODUCTION

Sound event localization and detection (SELD) is an uprising chal-
lenge in the DCASE community, it is a frame-wise based task
that aims to simultaneously detect the occurrence of various sound
events (SED) and estimate their direction-of-arrival (DOA). It first
appeared in DCASE 2019 and was initially treated as separate task
learning with individual evaluation metrics. In DCASE 2020 chal-
lenge, new evaluation metrics called location-aware detection and
class-aware localization were adopted to motivate the development
of unified learning systems. After that, some multi-task learning
frameworks were proposed to learn joint representations of both
SED and DOA. The task of this year stays mostly consistent with
former competitions but with non-targeted sound events included in
audio samples. These superimposed interference noises make dis-
cerning and localizing movable sounds events becomes more chal-
lenging.

All the previously proposed systems for SELD used mid-level
representations of audio as input formats, such as spectrograms or
Mel-frequency cepstral coefficients (MFCCs), which are regarded
as a form of prior knowledge constructed by human expertise. How-
ever, this feature-based solution requires separate human efforts and
is constrained by different parameter settings, e.g. window size,
hop size, or filter bank type, which in turn influences the design
of model architectures and is considered a sub-optimal solution.

Apart from that, audio data is intrinsically disordered among dif-
ferent sound events, thus, it is also a challenge to find the optimal
hyper-parameters for hand-engineered features which can adapt to
various sound events. To overcome the problem, several papers
have investigated the possibilities of directly learning audio repre-
sentations in the time domain while skipping the construction of
acoustic features. This kind of models is often called audio-based
end-to-end approaches, which have been explored mainly in speech
recognition [1, 2, 3], acoustic scene classification [4, 5] and mu-
sic auto-tagging [6, 7, 8]. In [9], they tried to build an end-to-end
model to do the sound event detection based on the ”SampleCNN”
architecture, which is widely used in the music auto-tagging domain
[10]. However, according to our knowledge, no previous work di-
rectly learns the representations based on raw audios in the SELD
task.

In this report, we propose an audio-based end-to-end SELD sys-
tem called Sample-level Sound Event Localization and Detection
network (SSELDnet), which does not depend on the human-
extracted features, thus further reducing the human domain knowl-
edge required. We deploy a Sample-level DCNN architecture [7]
in the feature embedding part, in which the filter size is several
samples long when doing the 1-D convolution in the bottom lay-
ers. We also combine the Residual block [11] with the Squeeze-
and-Excitation block [12] in the embedding layers, which is proved
to be effective for this task. To further improve the results, the
original GRU modules in the official baseline system [13] are re-
placed by ”Conformer” blocks [14]. The ”Conformer” module is
a convolution-augmented transformer architecture, while the trans-
former [15] can be used to extract long sequence dependencies, and
convolution is suitable for refining local features.

The TAU-NIGENS Spatial Sound Events 2021 dataset, used
in this competition, only includes 600 60-second audio recordings
while containing different interference sound events, making it rela-
tively insufficient for a modern DNN-based system to learn accurate
representations. Besides, the input size of raw audio is much larger
than human-extracted features, which is more difficult to general-
ize. To address the issue, applying data augmentation is a neces-
sary step in most of the previously proposed systems [16, 17, 18].
Due to different feature forms, some frequently used data augmen-
tation techniques such as SpecAugment [19] cannot be applied to
1-D raw audios. Besides, some other tricks like mixup [20] and
time-stretching may not contribute to the DOA estimation accord-
ing to our experiments. In fact, there are only limited augmentation
methods that can be applied to audio-based system. In our exper-
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Figure 1: Feature-based CRNN model (left) and proposed audio-based end-to-end SSELDnet (right)

iments, we adopt several approaches to apply data augmentation
directly in the time domain. The first method is Sound Field Ro-
tation (SFR) that was first used in [21]. However, they only inves-
tigated the feasibility of SFR on the first-order Ambisonics (FOA)
dataset. [16] improved their method by adding SFR to the Micro-
phone array (MIC) dataset. Our implementation remains the same
with [16]. Another two augmentation tricks that can be applied are
Time Masking (TM) and Random Audio Equalization (RAE).

The remainder of the paper is organized as follows. In Section
2, the proposed methods are illustrated in detail, including network
architecture and data augmentation. Experimental designs and re-
sults are shown in Section 3. Finally, we summarized the paper in
Section 4.

2. PROPOSED METHOD

2.1. Network Architecture

The proposed method is based on a time domain neural network as
well as a data augmentation scheme that operates on the raw wave-
forms. The comparison between our proposed network with the
baseline system is shown in Fig. 1. The main difference is that we

skip the mel-spectrogram extraction, which consists of a feature en-
gineering part , and instead utilize the raw audio as inputs. Besides,
the two GRU modules are replaced by two Conformer blocks. We
believe SED and DOA may have some common features that are
better preserved in raw audio form. Thus, we follow the design
of the baseline system [13] to jointly train the SED and DOA in a
shared network and adopt the activity-coupled Cartesian DOA vec-
tor (ACCDOA) representation [22] as a single target to predict the
SED and DOA simultaneously. Our model only has 2 million pa-
rameters, which can be regarded as a light model. The detailed
methods will be illustrated below.

• Sample-level CNN: SampleCNN was first proposed by [8],
which was used for music auto-tagging task. Before that, there
were a few raw audio-based solutions, but they all used large
size filters, which the system should learn all possible phase
variations, resulted in poor performance. In fact, using large-
kernel CNN will not improve the generalization ability because
it is not efficient at learning acoustic features using raw audio
representations. To address this issue, [8] replaced the frame-
level kernel with a much smaller sample-level kernel to do the
convolution, which resulted in better performance compared
with feature-based solution. We adopt their settings by using a
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Table 1: Eight transformations of Audio Rotation with Azimuth φ and Elevation θ, the original channel arrangement is (C1, C2, C3, C4)

DOA Transformation MIC FOA
φ = φ, θ = θ (C1, C2, C3, C4) (C1, C2, C3, C4)

φ = −φ− π/2, θ = θ (C4, C2, C3, C1) (C1, C−4, C3, C−2)
φ = −φ+ π/2, θ = θ (C1, C3, C2, C4) (C1, C4, C3, C2)
φ = φ+ π, θ = θ (C4, C3, C2, C1) (C1, C−2, C3, C−4)

φ = φ− π/2, θ = −θ (C2, C4, C1, C3) (C1, C−4, C−3, C2)
φ = φ+ π/2, θ = −θ (C3, C1, C4, C2) (C1, C4, C−3, C−2)
φ = −φ, θ = −θ (C2, C1, C4, C3) (C1, C−2, C−3, C4)

φ = −φ+ π, θ = −θ (C3, C4, C1, C2) (C1, C2, C−3, C−4)

kernel size of 3 to do the feature embedding.
• SE-ResNet Module: Most of the CNN architectures relies

on the design of the convolution part. We extend the Sam-
pleCNN architecture by bringing in SE-ResNet Module, which
is a combination of Squeeze-Excitation block [12] and mod-
ified Residual block [11]. The effectiveness of these blocks
have been proved in different audio tasks. There was a thor-
ough analysis [7] of using different blocks to do three audio
classification tasks, which were music auto-tagging, keyword
spotting and acoustic scene tagging. The detailed structure of
our SE-ResNet module is shown in Fig. 2 (left).

• Conformer Block: The Conformer architecture was proposed
in [14], which is a combination of convolution and transformer
[15]. It has been first applied to SELD task in [16]. Due to the
convolution layers have the property to capture the fine-grained
local features while the transformer is capable of learning long-
sequence dependencies, Conformer was considered powerful
enough to extract both local and global features of audios. In
our experiment, we used 2 Conformer blocks after feature em-
bedding. The detailed structure of Conformer is illustrated in
Fig. 2 (right).

Figure 2: Architecture of SE-Res Block (left) and Conformer Block
(right)

2.2. Data Augmentation

Data augmentation is an effective way to improve the model gen-
eralization and prevent overfitting problem. Furthermore, given the

limited data available for the DCASE challenges, data agumenta-
tion has had a significant impact in the performance [23, 16, 24, 25].
For the SELD task, some augmentation operations modify the input
data as well as the SED or DOA labels. For example, mixup [20] is
a common data augmentation strategy, but the DOA labels cannot
be mixed up effectively for all cases due to known constraints in the
data. More precisely, the number of simultaneous events is limited
to two.

In addition, some other audio augmentation tricks like gain
shift and polarity inversion could also impact the DOA estimation.
The former eliminates information regarding distance to the source,
while the latter can affect the phase of the mic signals. Therefore,
there is a limited set of augmentation methods that can be reliably
applied to our system to ensure the DOA estimation will not be neg-
atively impacted. After a cursory evaluation of multiple techniques,
the final system utilises three methods: Sound Field Rotation (SFR),
Time Masking (TM), and Random Audio Equalization (RAE).

• Sound Field Rotation: SFR is a spatial augmentation method
that generates more DOA labels for the same input signals, by
doing audio channel swapping and inversion. In [21], they in-
dicated it is an effective way to do the augmentation while not
affected DOA information. However, they only did the aug-
mentation on FOA formats, while discarded the information of
MIC data. In [16], they analysed the expressions of both two
data formats and proposed a complete SFR method that can be
applied to both MIC and FOA data. There are only eight valid
transformations that can be used to keep the spatial informa-
tion of MIC data unchanged. The detailed conversion rules are
presented in Table 1.

• Time Masking: TM is included in SpecAugment [19] as a
data augmentation trick for spectrograms. In this place, we
directly do the masking in time domain by manipulating audio
samples. In our experiments, t consecutive samples [ts, ts + t]
are masked in a single audio sequence S, where t is chosen
from a uniform distribution from 0 to the hyper-parameter T ,
and ts is randomly chosen from [0, S − t].

• Random Audio Equalization: For some sound events, the
models can rely excessively in a few salient features that do
not cover the full audio spectrum. To counter this, we apply
RAE to the input signal. In each minibatch, each observation
is filtered randomly by either a low pass, high pass, or and oc-
tave wide band pass fitlers. In practice, we use biquad IIR fil-
ters with order 3, where the frequencies are randomly selected
from the set [250, 500, 1000, 2000, 4000] Hz.
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Table 2: Evaluation results for the development set using test splits

Framework ER20◦ F20◦ LECD LRCD

Baseline FOA 0.69 33.9% 24.1 43.9%
Baseline MIC 0.74 24.7% 30.9 38.2%

SSELDnet 0.74 32.6% 26.4 64.2%
SSELDnet + Aug 0.71 36.8% 23.3 66.8%

3. EXPERIMENTAL EVALUATION

3.1. Experimental settings

We use both FOA and MIC data formats in the TAU-NIGENS
Spatial Sound Events 2021 dataset, both formats contain 600 60-
second, four-channels audio recordings. We adopt ACCDOA rep-
resentation [22] to jointly learn SED and DOA tasks. The eval-
uation metrics [26] remain the same with DCASE 2020. For SED
task, there are two evaluation metrics, including location-dependent
F-score (F≤T◦ )and Error-Rate (ER≤T◦ ), which only consider pre-
dicted events under a certain threshold T ◦, where in this challenge
T = 20. For DOA task, classification-dependent Localization Er-
ror (LECD) and Localization Recall (LRCD) are evaluated, where
LECD represents the average angular distance between ground
truth and prediction, and LRCD stands for true positive rate of how
many locations estimates are detected in a class.

For the hyper-parameter settings, we split one recording into
55 small pieces with window length of 6 seconds and hop length
of 1 second to increase dataset size. The sample rate of the sig-
nal is set to 24kHz. We use Adam [27] as the optimizer and Re-
duceLROnPlateau in PyTorch as the learning rate scheduler with
the initial learning rate of 0.001. Early stopping is used to prevent
overfitting. For the data augmentation, all of the data augmenta-
tion tricks are applied online, which means the system randomly
chose some hyper-parameters and then apply augmentation before
the data is fed into the network. This operation will efficiently re-
duce the memory usage.

3.2. Experimental results

We compare our results with baseline system [13] in test splits. All
the results are shown in Table 2.

4. CONCLUSION

We propose a fully end-to-end sample-level framework for DCASE
2021 task 3, Sound Event Localization and Detection. We inves-
tigate the possibilities that directly take raw audio as input to pre-
dict the SELD task. Our system does not require prior knowledge
in acoustics to extract hand-engineered features. For the system
design, we extend SampleCNN architecture by introducing SE-
ResNet block and Conformer block. Further, three data augmen-
tation methods are applied to improve the system generalization.
Finally, the experimental results compared with the baseline sys-
tem on the TAU-NIGENS Spatial Sound Events 2021 dataset are
presented.
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