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ABSTRACT

In this study, we present an unsupervised anomalous sound detec-
tion framework trained on the DCASE2021 audio dataset. We use
LeNet architecture to classify the machine IDs and use the classi-
fication loss as a threshold for detecting the anomalies in an unsu-
pervised manner. We train our classifier on log-mel-bands and use
the Mixup approach to augment our training set. Our framework
outperforms both DCASE2021 benchmarks: the dense autoencoder
and the MobileNet. The dense autoencoder has a harmonic mean
of AUC of 61.92 and pAUC of 53.26 and the MobileNet has a har-
monic mean of AUC of 59.72 and pAUC of 56.37. Our framework
achieved the harmonic mean AUC of 66.72 and pAUC of 60.59,
over all the machines, which shows an improved performance of
7.75% and 13.76%, AUC- and pAUC-harmonic-mean respectively
from the dense autoencoder. The improved performance of our ap-
proach from the Mobilenet baseline is 11.72% and 7.48%, AUC-
and pAUC-harmonic-mean respectively.

Index Terms— anomaly detection, anomalous sound detec-
tion, machine learning

1. INTRODUCTION

Automatic Anomalous Sound Detection (ASD) is a system that
identifies abnormal sounds emitted from specific equipment and is
considered an essential technology in industry 4.0 [1]. Such sys-
tems are often used for machine condition monitoring and aim to
detect unknown anomalous sounds. In real-world cases, anomalies
are infrequent and take many different forms. An extensive and time
consuming data collection process would be needed to capture all
the variations of anomalies from a machine. If, on the other hand,
only data from the machinery in normal condition are collected, the
system can be trained to only learn the natural routine of the tar-
geted equipment. Deviations from this routine are then identified as
abnormal behaviour.

Additionally, real-world cases often involve different machine
operating conditions between the training and testing phases. For
instance, changes in the seasonal demand of many products will
lead to variations in the sound of the machines producing these
products. Consequently, using training data and test data that are
different in operating speed, machine load, environmental noise,
etc. (i.e., contain a domain shift) will more properly capture these
complications.

The DCASE2021 challenge of unsupervised anomalous sound
detection [2] focuses on these 2 issues (unsupervised training and
domain shift), where participants are asked to use the provided au-
dio dataset and submit their results.

The audio dataset provided by organizers of this task contains
recordings of 7 different types of machines that are parts of the
ToyADMOS[3] and MIMII [4] datasets: Pump, Fan, Slider, Toy-
Car, ToyTrain, Gearbox and Valve. Each machine type consists of
three sections. The dataset is available under 3 different releases:

e Development set: contains a training set and a testing set for
each machine

e Extra training set: contains more training data for each ma-
chine

e Evaluation set: contains evaluation data for each machine

Furthermore, the DCASE community provides two baseline sys-
tems [1]: a dense autoencoder with 8 layers (4 encoding and 4
decoding layers) each with 128 units. The bottleneck of this ar-
chitecture has 8 units with a rectified linear unit (ReLU) activation
function. Each layer of the autoencoder is followed by a batch nor-
malization layer, then a dense layer of size 640 (number of fea-
tures), defined as its output layer. the second baseline system is
the MobileNet, which classifies the machine conditions, also called
as machine IDs (or sections). The classification loss between the
input and the predictions are used to calculate a gamma point dis-
tributed anomaly threshold, which detects the machine anomaly in
an unsupervised manner. Both models are trained on 5-consecutive
(2*%P+1, where P is the context window size) frames of log Mel band
energies of size 128 x 64 ms analysis window (50% hope size) re-
sulting in an input with the dimension of 640. Evaluation metrics
used for this task are the Area Under Receiver Operating Character-
istic (ROC) curve (AUC) and the partial AUC (pAUC) as illustrated
in equations 1 and 2. The official score €2 is calculated using the
harmonic mean of the AUC and pAUC as in 4.
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Figure 1: Overview of Our LeNet Architecture

where h{-} represents the harmonic mean (over all machine types
sections, and domains), M represents the set of the machine types,
and S(m) represents the set of the sections for the machine type
m.

In this work, we consider the a classifier using the LeNet archi-
tecture with convolutional layers. This idea is motivated by the
Mobile-Net benchmark [2] provided by the DCASE2021 organiz-
ers. We use mel-spectrograms for our model’s input as they have
proven to be robust in capturing audio features and appropriate in-
put for training neural networks [5]. We further use the Mixup
technique as our data augmentation approach. It increases the
size of the train set to four times the given development set. Our
proposed framework outperforms both baselines by 11.72% and
7.48%, AUC- and pAUC-harmonic-mean. We provide more details
of our results compared to both baselines for each machine type and
machine id in section 3.

The rest of this report is organized as follows. We present our
model architecture in section 2) and our experimental results in sec-
tion 3.

2. METHODOLOGY

Our methodology is motivated by the DCASE2021 MobileNet
baseline, where a classification task is used to classify the machine
IDs in different domains.

The idea of using such classification model is to calculate the
classification loss between the train and the predictions to achieve
a gamma-point-distribution for the anomaly threshold. We use
this idea and evaluate the performance of LeNet architecture on
DCASE2021 machine anomaly dataset.

Our LeNet architecture has four 2-dimensional convolutional
layers with 32, 64, 128 and 256 filters, kernel size of 3, stride size of
1 and relu activation function. each convolutional layer is followed
by a batch normalization, a 2-dimensional MaxPooling layer of the
size 2 and 1% dropout. the output of the last convolutional layer
is passed via a global max pooling layer to the dense layer with
softmax activation function and 6 units, each unit for one machine
condition. We depict our architeture in Figure 1.

We further apply Mixup [6] method to augment our train set
and create new data from blended spectrograms. This data augmen-
tation technique has proven to be robust for image and acoustic data,
when aiming at regularizing the machine learning models.

y
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3. RESULTS

As features for our model, we use 128 log mel-bands that are ex-
tracted from a 0.025 second analysis time window with a 0.012
second overlap over 64 time steps. Our LeNet architecture has
four convolutional layers and one fully-connected layer resulting
in 391302 total parameters with 960 non-trainable parameters. The
activation function in each layer is a Relu function. Additionally,
a dropout of size 0.1 is set at each encoding layer. We use the
Adam optimization algorithm with 0.01 learning rate to compile the
model. The model is trained on 80% of the train set and evaluated
on the remaining 20%, over 100 epochs. Furthermore, we monitor
the evaluation loss at each training epoch and use early stopping,
setting the patience to 20. We stop at the " training epoch (where
x <= patience_value), if we observe no improvement in the eval-
vation loss[7]. We augment the training data using the Mixup tech-
nique with the alpha value set as 0.4 over 100 batches of the input
spectrograms.

The results of our experiments compared to the DCASE2021 base-
line system are presented in the following tables.

Table 1: Results of LeNet Architecture compared to the baselines
on ToyCar

ToyCar
MachineID Dense-AE MobileNet LeNet
AUC pAUC AUC pAUC AUC pAUC
Source-00 67.63% | 51.87% | 66.56% | 66.47% | 63.95% | 61.36%
Source-01 61.97% | 51.82% | 71.58% | 66.44% | 53.37% | 51.10%
Source-02 74.36% | 55.56% | 40.37% | 47.48% | 52.45% | 48.89%
Target-00 54.50% | 50.52% | 61.32% | 52.61% | 64.96% | 51.10%
Target-01 64.12% | 52.14% | 72.48% | 63.99% | 53.65% | 53.73%
Target-02 56.57% | 52.61% | 45.17% | 48.85% | 69.58% | 59.78%
Arithmetic | 63.19% | 52.42% | 59.58% | 57.64% | 59.65% | 54.32%
mean
Harmonic 62.49% | 52.36% | 56.04% | 56.37% | 58.91% | 53.94%
mean

Table 2: Results of LeNet Architecture compared to the baselines
on ToyTrain

ToyTrain
MachineID Dense-AE MobileNet LeNet

AUC pAUC AUC pAUC AUC pAUC

Source-00 72.67% | 69.38% | 69.84% | 54.43% | 89.79% | 82.52%

Source-01 72.65% | 62.52% | 64.79% | 54.09% | 88.65% | 81.15%

Source-02 69.91% | 47.48% | 69.28% | 47.66% | 78.80% | 47.36%

Target-00 56.07% | 50.62% | 46.28% | 51.27% | 54.90% | 51.73%

Target-01 51.13% | 48.60% | 53.38% | 49.60% | 57.42% | 53.63%

Target-02 55.57% | 50.79% | 51.42% | 53.40% | 62.74% | 59.57%

Arithmetic | 63.00% | 54.90% | 59.16% | 51.74% | 72.05% | 62.66%
mean

Harmonic 61.71% | 53.81% | 57.46% | 51.61% | 69.22% | 59.80%
mean

4. CONCLUSION

In this work, we proposed a framework for an unsupervised
anomaly detection, which uses the Mixup data augmentation ap-
proach on log-mel bands as input and the LeNet Architecture to
classify the machine sections. We used the classification loss be-
tween the inputs and model predictions to estimate an anomaly
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Table 3: Results of LeNet Architecture compared to the baselines
on Fan
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Table 6: Results of LeNet Architecture compared to the baselines
on Slider

Fan Slider
MachineID Dense-AE MobileNet LeNet MachineID Dense-AE MobileNet LeNet
AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

Source-00 66.69% | 57.08% | 43.62% | 50.45% | 65.46% | 51.94% Source-00 74.09% | 52.45% | 61.51% | 53.97% | 96.38% | 88.78%
Source-01 67.43% | 50.72% | 78.33% | 78.37% | 85.45% | 82.73% Source-01 82.16% | 60.29% | 79.97% | 55.62% | 74.96% | 56.73%
Source-02 64.21% | 53.12% | 74.21% | 76.80% | 68.52% | 72.05% Source-02 78.34% | 65.16% | 79.86% | 71.88% | 83.30% | 81.33%
Target-00 69.70% | 55.13% | 53.34% | 56.01% | 34.10% | 48.15% Target-00 67.22% | 57.32% | 51.96% | 51.96% | 80.10% | 57.89%
Target-01 49.99% | 48.49% | 78.12% | 66.41% | 83.33% | 75.89% Target-01 66.94% | 53.08% | 46.83% | 52.02% | 52.53% | 51.70%
Target-02 66.19% | 56.93% | 60.35% | 60.97% | 60.56% | 64.42% Target-02 46.20% | 50.10% | 55.61% | 55.71% | 59.21% | 53.79%
Arithmetic | 64.03% | 53.58% | 64.66% | 64.84% | 66.23% | 65.77% Arithmetic | 69.16% | 56.40% | 62.62% | 56.86% | 74.41% | 65.03%

mean mean
Harmonic 63.24% | 53.38% | 61.56% | 63.02% | 60.35% | 63.30% Harmonic 66.74% | 55.94% | 59.26% | 56.00% | 71.31% | 62.24%

mean mean

Table 4: Results of LeNet Architecture compared to the baselines
n Gearbox

Table 7: Results of LeNet Architecture compared to the baselines
on Valve

Table 5: Results of LeNet Architecture compared to the baselines
on Pump

Pump
MachineID Dense-AE MobileNet LeNet
AUC pAUC AUC pAUC AUC pAUC
Source-00 67.48% | 61.83% | 64.09% | 62.40% | 63.41% | 58.84%
Source-01 82.38% | 58.29% | 86.27% | 66.66% | 91.40% | 76.21%
Source-02 63.93% | 55.44% | 53.70% | 50.98% | 67.18% | 58.36%
Target-00 58.01% | 51.53% | 59.09% | 53.96% | 54.67% | 54.15%
Target-01 47.35% | 49.65% | 71.86% | 62.69% | 82.01% | 64.68%
Target-02 62.78% | 51.67% | 50.16% | 51.69% | 64.79% | 58.68%
Arithmetic | 63.66% | 54.74% | 64.20% | 58.06% | 70.57% | 61.82%
mean
Harmonic 61.92% | 54.41% | 61.89% | 57.37% | 68.55% | 61.08%
mean

threshold. Our framework outperformed both baseline systems pro-
vided by the challenge organizers with 11.72% and 7.48% AUc- and
pAUc-harmonic mean over all machine types. We further would
like to focus on the transparency of all three systems, baselines and
LeNet classifier, to justify the outcome of the models and why they
achieve different results on the same inputs.

5. ACKNOWLEDGMENTS

We would like to thank the Austrian Research Promotion Agency
(FFG) for funding this work. It is part of the industrial project under
the name DeepRUL, project ID 871357.

Gearbox Valve
. Dense-AE MobileNet LeNet . Dense-AE MobileNet LeNet

MachinelD | — =30 T AUC | pAUC | AUC | pAUC MachinelD e~ pAUC [ AUC | pAUC | AUC | pAUC
Source-00 | 56.03% | 51.59% | 81.35% | 70.46% | 84.43% | 67.75% Source-00 | 50.34% | 50.82% | 58.34% | 54.97% | 73.14% | 65.26%
Source-01 | 72.77% | 52.30% | 60.74% | 53.88% | 73.66% | 63.16% Source-01 | 53.52% | 49.33% | 53.57% | 50.09% | 96.02% | 83.84%
Source-02 | 58.96% | 51.82% | 71.58% | 62.23% | 49.75% | 49.36% Source-02 | 59.91% | 51.96% | 56.13% | 51.69% | 89.95% | 71.47%
Target-00 | 74.29% | 55.61% | 15.02% | 53.96% | 64.77% | 68.72% Target-00 | 47.12% | 48.68% | 52.19% | 51.54% | 71.28% | 66.89%
Target-01 | 72.12% | 51.78% | 56.27% | 53.30% | 75.10% | 57.80% Target-01 | 56.39% | 53.88% | 68.59% | 57.83% | 61.54% | 57.52%
Target-02 | 66.41% | 53.66% | 64.45% | 55.58% | 48.50% | 50.31% Target-02 | 55.16% | 48.97% | 53.58% | 50.86% | 78.90% | 58.52%
Arithmetic | 66.76% | 52.80% | 68.24% | 60.03% | 68.91% | 59.51% Arithmetic | 53.74% | 50.61% | 57.07% | 52.83% | 78.47% | 68.25%

mean mean
Harmonic | 65.97% | 52.76% | 66.70% | 59.16% | 65.46% | 58.48% Harmonic | 53.41% | 50.54% | 56.51% | 52.64% | 76.76% | 66.97%

mean mean
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