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ABSTRACT 

This technical report describes our acoustic scene classification 

systems for DCASE2021 challenge Task1 subtask A. We de-

signed two Trident ResNets with three parallel paths, which is tar-

geted to low complexity. The trident structure with respect to the 

frequency domain is beneficial when analyzing samples collected 

from minority or unseen devices. To satisfy the model complexity 

requirement, we replaced a standard convolution with a depthwise 

separable convolution and applied weight quantization to the 

trained model. As a result of performance evaluation, our system 

trained by applying data augmentation showed a log loss of 0.968 

and a classification accuracy of 65.8% for the test split.  

Index Terms—Acoustic Scene Classification, Trident-

ResNet, Depthwise Separable Convolution, Weight Quan-

tization, SpecAugment 

1. INTRODUCTION 

Acoustic Scene Classification (ASC) is a task of classifying given 

data into one of the predefined acoustic scene classes. This year, 

ASC task was released in two subtasks: Subtask A for low-com-

plexity acoustic scene classification with multiple devices, and 

Subtask B for audio-visual scene classification [1]. The main issue 

of the subtask A is to design a classifier with low complexity that 

works stably on various devices. A model size limit is 128 KB, 

which corresponds to 32,768 parameters of float32, and the eval-

uation dataset includes data recorded with new devices that has not 

appeared in the development dataset.  

In the following sections, we describe our proposed models 

for subtask A, training methods, and evaluation results. 

2. DATASETS 

The development dataset of TAU Urban Acoustic Scene 2020 

Mobile contains 23,035 samples. Each sample corresponds to one 

class out of ten, and there is no sample with multiple labels. This 

dataset consists of various audio samples collected from three real 

devices and six simulated devices. Most of the data were collected 

from Zoom F8 audio recorder with a binaural microphone, and 

data from Samsung Galaxy S7, iPhone SE are also included. The 

simulated devices are synthesized by processing the data of device 
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A with various impulse responses and additional dynamic range 

compression. The organizer of the challenge provides basic 

metadata of training/test split consisting of 13,962 samples in the 

training set and 2,968 samples in the test set. The evaluation da-

taset of TAU Urban Acoustic Scene 2021 Mobile, which contains 

7,920 samples, also includes audio data from the new devices 

such as a GoPro Hero5 Session and the five simulated devices [1].  

3. SYSTEM ARCHITECTURE 

3.1. Feature Extraction  

The data are mono audio files with 44.1 kHz sample rate. We 

transformed them into power spectrogram by skipping every 1024 

samples with 2048 length Hann window. A spectrum of 431 

frames was yielded from 10 seconds audio file, and each spectrum 

was compressed into 256 bins using Mel-scaled filter bank. Addi-

tionally, deltas and delta-deltas were calculated from the log Mel 

spectrogram and stacked into the channel axis. The number of 

frames of the input feature is cropped by the length of the delta-

delta channel so that the final shape becomes [256×423×3]. 

3.2. Data Augmentation 

We only utilized training split of the challenge dataset, and applied 

two data augmentation techniques to increase the diversity of data 

distribution. Our data augmentation strategies are listed in Table 1. 

The start frame of temporal cropping was randomly selected in the 

previous half of the entire frame. SpecAugment was applied to 

only 30% of the total training data. The augmented data were gen-

erated from each mini-batch consisting of 64 samples during the 

training process in real-time. 

 

Table 1: List of data augmentation strategies 

Strategy Parameter 

Temporal cropping Crop length : 5 seconds 

SpecAugment [2] 
Maximum length of masking 

- time : 10 frames, frequency : 4 bins 

3.3. Trident ResNets with Low Complexity 

Two different structures of Trident ResNet with low complexity 

are proposed according to the processing method in the residual 
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block with different number of channels between input and output 

feature map.  

3.3.1. Trident ResNet A 

Based on the our Trident ResNet submitted last year [3], we rede-

signed a residual block A (Res-block A) to achieve low model 

complexity as shown in Fig. 1 [4]. It consists of two DSC (Depth-

wise Separable Convolution) blocks [5] and an identity path with 

zero-padding after average pooling to avoid mismatch between 

input and output. 

 

 
Figure 1: Residual block A with low complexity 

 

Each DSC block is constructed in the order BN-ReLU-DSConv. 

Gamma and beta terms are not used in Batch Normalization layers, 

and there is no bias term in DSConv layers.  

 

 
Figure 2: Overall structure of Trident ResNet A  

(3x3) DSConv layer applied for model size reduction is the same 

as the combination of (3x3) depthwise convolution and (1x1) 

pointwise convolution and neither strides nor dilation in convolu-

tion layer is applied. Kernels are initialized with He normal dis-

tribution [6] and regularized with L2 regularization of 5×10−4. 

Max pooling with 2x2 strides is applied to the remaining blocks 

except the first of three residual blocks. The number of filters ap-

plied to the three residual blocks is 16, 32, and 64. 

We arranged the residual block in parallel and concatenated 

their outputs for classification. To learn effectively distinct fea-

tures from different frequency bands, our model is composed of a 

trident structure, consisting of 0-63, 64-127, and 128-255 Mel 

bins [4], [7]. After concatenating the outputs from each network, 

two blocks of 1×1 convolution and Global Average Pooling (GAP) 

calculates the classification scores. The overall structure of Tri-

dent ResNet A is shown in Fig. 2. 

3.3.2. Trident ResNet B 

Residual block B (Res-block B) is different from Res-block A in 

that max pooling is optionally applied after skip connection pro-

cessing as shown in Fig. 3.  Max pooling with 2x2 strides is ap-

plied every even-numbered Res-block B. 

 

 
Figure 3: Residual block B with low complexity 

 

The overall structure of Trident ResNet B is shown in Fig. 4 and 

the number of filters applied to the six residual blocks is [16, 16, 

32, 32, 64, 64]. The padding option of (3x3) Conv2D located in 

the front of the model is ‘valid’. DSC block plays an additional 

role of matching the number of channels between input and output 

in Res-block B. Trident ResNet B is constructed deeper than Tri-

dent ResNet A by stacking twice as many residual blocks.    

3.4. Model Complexity 

Table 2 shows the model complexity of Trident ResNets. For 

weight quantization, the model trained in float32 is converted to 

float16. The quantized FP16 models satisfy the model size limit 

of 128 KB. 

 

Table 2: Model complexity of Trident ResNets 

Model Name Total Parameters FP16 Model Size 

Trident ResNet A 54,845 113.9 KB 

Trident ResNet B 60,236 124.4 KB 
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Figure 4: Overall structure of Trident ResNet B 

3.5. Loss Function 

Focal loss [8] attenuates the log loss generated by well-trained 

samples, so that the model can focus on the poorly trained samples. 

The following equation describes focal loss with balancing pa-

rameter 𝛼, focusing parameter 𝛾 and prediction score 𝑝𝑡. 

 
𝐹𝐿(𝑝𝑡) = −𝛼(1 − 𝑝𝑡)

𝛾log(𝑝𝑡)                      (1) 

 
Increasing the value of 𝛾 increases the sensitivity of the model to 

misclassified samples, and 𝛼 scales the loss function linearly. Our 

setting for 𝛾 and 𝛼 was 2.0 and 0.25, respectively. 

3.6. Learning Rate Scheduler 

We trained our model using Stochastic Gradient Descent (SGD) 

[9] optimizer with a momentum of 0.9. The learning rate 𝜂𝑡  is 

controlled by a cosine annealing scheduler using (2), (3) and re-

starts at 2, 6, 14, 30, 62, 126, 254 epochs.  

 

𝜂𝑡 = 𝜂𝑚𝑖𝑛
𝑖 +

1

2
(𝜂𝑚𝑎𝑥

𝑖 − 𝜂𝑚𝑖𝑛
𝑖 ) (1 + cos (

𝑇𝑐𝑢𝑟

𝑇𝑖
𝜋))        (2) 

  

[𝜂𝑚𝑖𝑛
𝑖+1 , 𝜂𝑚𝑎𝑥

𝑖+1 ] = 𝛽 ∙ [𝜂𝑚𝑖𝑛
𝑖 , 𝜂𝑚𝑎𝑥

𝑖 ]                    (3) 

 

The initial value of 𝜂𝑚𝑖𝑛
𝑖  and 𝜂𝑚𝑎𝑥

𝑖 , which is 10-1 and 10-5 respec-

tively, decreases by 10% (𝛽 = 0.9) for each restart to explore 

deeper areas on the hyperplane. 

4. RESULTS 

This section reports the macro-average multiclass cross-entropy 

(log loss) and macro-average accuracy (average of the class-wise 

accuracies) of our submitted systems for the training/test split. In 

the Table 3, Trident ResNet A and B correspond to the results of 

applying only the temporal corp. As can be seen from the results, 

additional SpecAugment helps to improve both log loss and accu-

racy for Trident ResNet B, but not for Trident ResNet A. It seems 

that further analysis is needed on the various parameter combina-

tions in SpecAugment to find out the specific cause for these re-

sults. 

 

Table 3: Test split results of subtask A development set 

ID System Name 
Log 

Loss 
Accuracy 

- DCASE2021 Task1A Baseline 1.473 47.7% 

1 Trident ResNet A 1.006 65.9% 

2 Trident ResNet A + SpecAug 1.015 64.9% 

3 Trident ResNet B 1.014 64.6% 

4 Trident ResNet B + SpecAug 0.968 65.8% 

 

To submit the prediction results for the evaluation dataset, the pro-

posed systems were trained using the entire development dataset. 

5. CONCLUSION 

We proposed acoustic scene classification models based on tri-

dent architecture for DCASE 2021 Task 1 subtask A. To satisfy a 

model size requirement, a depthwise separable convolution and 

weight quantization was adopted. The two Trident ResNets have 

a difference in the structure and the stacking depth of basic resid-

ual block. In the evaluation using development dataset, our pro-

posed model showed a log loss of 0.968 and an accuracy of 65.8%, 

which improved by 0.505 and 18.1% respectively over the base-

line system. 
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