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ABSTRACT 

We present a technical paper that provide details of our classifi-

cation model submitted to DCASE 2021 Task1a challenge. In this 

paper, we proposed the use of DSS with mobile network to tackle 

low complexity computation.  

Index Terms— deep scattering spectrum, convolution 

neural network, low complexity computation, mobile net-

work 

1. INTRODUCTION 

This paper provides a technical breakdown of our proposed model 

to tackle DCASE 2021 Task 1a [1,2], which requires the network 

model to be of low computational complexity on top of the ability 

for the model to identify it vicinity, given an acoustic recording. 

The use case of low computational complexity model is in line 

with the advancement and mass adaptation of Internet of Things 

and robotics, where on-node detection is required to make near 

real-time decision. Hence, low latency and less memory model is 

desired. There are applications that can benefit from this field of 

research such as improvement in hearing-aid [3,4], guiding de-

vices for visually impaired people and navigation system for ro-

bots. Although this is a relatively new challenge presented in 

DCASE 2021 Task 1a, designing low complexity deep learning 

models has gained traction in the image domain with state-of-the-

art models such as MobileNet [5,6], ShuffleNet [7,8], SqueezeNet 

[9] , CondenseNet [10] and ShiftNet [11]. Another aspect of acous-

tic scene classification (ASC) framework is selecting the feature 

extractor, and commonly, log-mel spectrogram is being used to 

preprocess the raw waveform into a time-frequency representation. 

However, in this paper, we distinctly used deep scattering 

spectrum (DSS) [12,13] which is also a time-frequency represen-

tation but unlike log-mel spectrogram, it does not suffer from 

heavy loss of information when a larger window size ( > 23ms) is 

being applied and further described in Section 2.  

Naturally, DSS representation is later fitted with a convolu-

tion neural network adapted from MobileNetV2 [5], MobileNetV3 

[6] and ShuffleNet[7,8] architecture. Hence, in the subsequence 

sections, we elaborate on DSS in Section 2, and provide a detailed 

account of our proposed Mobile Network combined with DSS in 

Section 3. In Section 4, we described the experimental setup while 

Section 5 discussed the result. Lastly, we give a conclusion in Sec-

tion 6.  

2. DEEP SCATTERING SPECTRUM 

In simplicity, Deep Scattering Spectrum (DSS) is a cascading of 

wavelet transform and has a very similar computational architec-

ture as CNN [12,13]. ‘Morlet’ wavelet is the mother wavelet se-

lected for the demodulation of the amplitude and by continuously 

applying wavelet transform on the demodulated features, which is 

termed as orders in the context of DSS [13], we retain higher res-

olution information which was lost during averaging of the earlier 

orders. Thus, DSS is stable to deformation even when the time 

scale is larger than 23ms. 

Hence, with the understanding of the aforementioned, this 

paper used DSS as the feature extraction algorithm and DSS is 

created using Kymatio [14] and constructed with a time scale of 

~92ms with a quality factor of 9.  

3. MOBILE NETWORK 

Mobile networks in this context are dedicated CNN architecture 

with the goal of reducing computational complexity, such that it 

has enough depth to classify correctly while being light-weight 

enough to be ported on device or fast enough for near real-time 

analysis, and has myriads of application uses, especially for the 

industry where computational complexity correlate to cost. 

Hence, the innovation on mobile networks is not shy from a 

more monolithic CNN architecture which goal is to increase accu-

racy. The main algorithm used in mobile network [5-8] [10] to re-

duce computational complexity is matrix factorization, which 

changes multiplicative component to additive component. Matrix 

factorization in CNN is better known as group convolution [7,8] 

or cardinality [15] and on an extreme level, depthwise convolution 

layer which is the convolution of a single channel follow by con-

catenation of all the channels. 

Inspired by the works from MobileNet [5,6] and ShuffleNet 

[7,8], we adapted a reduced convolution layers mobileNetV2 [5], 

where our model only consists 8 mobile convolution blocks with 

number of filters as {16,24,24,32,32,64,64,80} and alpha as 0.5, 

where alpha is a setting which determine the number of channels 

per convolutional layers in each convolution block [5,6]. Similar 

to the first convolution layer of [5], we have a convolution layer 

as the first layer. To reduce the computational cost further, we  
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Scene Label logloss Device-wise log-losses Accuracy 
  

A B C S1 S2 S3 S4 S5 S6 
 

airport 1.593 1.186 1.696 1.561 1.631 1.451 1.306 1.908 1.653 1.943 46.5% 

bus 1.179 0.831 1.373 1.110 1.137 1.116 1.133 1.238 1.252 1.420 79.5% 

metro 1.461 1.258 1.421 1.456 1.614 1.519 1.397 1.482 1.466 1.536 58.9% 

metro_station 1.507 1.240 1.587 1.571 1.576 1.621 1.521 1.612 1.425 1.408 59.6% 

park 1.111 0.728 0.748 0.654 1.167 1.385 1.163 1.330 1.247 1.577 80.8% 

public_square 1.880 1.533 1.816 1.575 1.939 1.971 1.884 1.961 1.986 2.260 37.7% 

shopping_mall 1.377 1.134 1.309 1.316 1.451 1.315 1.328 1.420 1.295 1.823 70.0% 

street_pedestrian 1.737 1.513 1.739 1.580 1.740 1.804 1.714 1.770 1.937 1.838 42.8% 

street_traffic 0.818 0.686 0.883 0.810 0.875 0.835 0.788 0.693 0.698 1.099 88.9% 

tram 1.434 1.113 1.714 1.368 1.219 1.526 1.393 1.449 1.532 1.591 65.7% 

Average 1.410 1.122 1.428 1.300 1.435 1.454 1.363 1.486 1.449 1.650 63.03% 

 

Table 1. Classification result for DSSMNet1 based on scene wise log loss, device wise log loss and scene wise accuracy. Total Av-

erage log loss for our best model is 1.410 while achieving an accuracy of 63.03%. 

 

follow [6] suggestion in adapting a fully convolution approach 

(FCN), hence, our last two layers consists of a convolution layer 

with filter size of (1x1x128) follow by another convolution layer 

with filter size of (1x1x10). Lastly, global average pooling then a 

softmax is applied as the classifier. 

For another model, instead of 8 mobile blocks, we have 6 and 

our alpha is being set as 1. For the last mobile convolution block, 

following [8] channel split concept, we split the network into half 

during the expansion process. We also remove the second last 

(1x1,128) convolution layer and adapted average channel-wise at-

tention and spatial attention [16]. As having both average and max 

channel attention will exceed the model complexity criteria, only 

average channel attention is included. 

In brevity, our convolution layers are always coupled with a 

batch normalization follow by an activation function swish [17], 

lastly, our models will be termed as DSSMNet1 and DSSMNet2, 

in respect to the order presented in the earlier paragraphs.   

4. EXPERIMENTATION SETUP 

In this section, we discussed the dataset being used and provide a 

description on the new challenge requirement for DCASE 2021 

Task1a. Next, we provide details on the training process of our 

proposed feature and model. 

4.1. Dataset 

Our model is being tested on DCASE 2021 Task 1a dataset [18] 

which contains acoustic recording from 10 cities and recorded by 

3 real devices and 6 simulated devices giving us a total of 64 hours 

of audio recording. We follow the given training setup where the 

training/test split is 70%/30% and no down sampling is being per-

formed when preprocessing the waveform to IDSS.  

4.2. Implementation 

In this paper, we evaluated on two models, one with DSS as the 

input representation, while the other uses IDSS as the input 

representation. Our model is trained in mini batch size of 16 with 

Rectified Adam [19] with warmup setting that increase from 0 to 

0.001 in 1000 steps, then decrease linearly from 0.001 to 

0.000001 in 9000 steps. Data Augmentation, Mix Up with alpha 

of 0.2 is applied only on DSSMNet2 as it yields better perfor-

mance. The entire CNN system is being built and trained using 

Tensorflow & Keras and following [2], we further optimized the 

model using Tensorflow post-training float 16 quantization 

method. Hence, our models consist of 63448 and 64850 total pa-

rameters, which is then converted to float 16, giving us 124 kb 

and 126.6kb, for DSSMNet1 and DSSMNet2 respectively. Lastly, 

the classification result is evaluated using our float 16 optimized 

models. 

5. RESULT 

Following DCASE 2021 Task1a evaluation metric, Table 1 pro-

vide the breakdown of the classification result, for DSSMNet1 

model and Table 2 show the comparison of Baseline model vs 

DSSMNet1 and DSSMNet2. Our best model, DSSMNet1 

achieved 63.03% classification accuracy which is ~15% improve-

ment from DCASE 2021 Task1a baseline model, however, if we 

compare logloss, DSSMNet1 only slightly edge over baseline 

model while DSSMNet2 achieve a significant decrease of ~0.23. 

Hence, for DCASE 2021 Task1a challenge, DSSMNet2 stands to 

be a better model.  

6. CONCLUSION 

The main challenge here is the limitation of model complexity and 

model size and hence, it is not possible to relay on transfer learn-

ing or embedded system where we can tap on pre-existing models 

or enriched features to further improve the performance of the 

system. However, it developed our creativity in adapting various 

model design to create an optimal model as we need to consider 

the viability of every layers added to the model. Lastly, the model 

with the highest accuracy might not always be the optimal model  
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No Model logloss Accuracy 

1 Dcase Task1a baseline [2] 1.473 47.7% 

2 DSSMNet1 1.41 63.03% 

3 DSSMNet2 1.242 62.30% 

 

Table 2. Result comparison between our proposed models and 

Dcase Task1a baseline. 

 

as we need to evaluate with other metric such as log loss and also 

consider the complexity of the model. 
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