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ABSTRACT 

This report proposes a polyphonic sound event detection (SED) 

method for the DCASE 2021 Challenge Task 4. The proposed 

SED model consists of two stages: a mean-teacher model for 

providing target labels regarding weakly labeled or unlabeled data 

and a self-training-based noisy student model for predicting 

strong labels for sound events. The mean-teacher model, which is 

based on the residual convolutional recurrent neural network 

(RCRNN) for the teacher and student model, is first trained using 

all the training data from a weakly labeled dataset, an unlabeled 

dataset, and a strongly labeled synthetic dataset. Then, the trained 

mean-teacher model predicts the strong label to each of the 

weakly labeled and unlabeled datasets, which is brought to the 

noisy student model in the second stage of the proposed SED 

model. Here, the structure of the noisy student model is identical 

to the RCRNN-based student model of the mean-teacher model in 

the first stage. Then, it is self-trained by adding feature noises, 

such as time-frequency shift, mixup, SpecAugment, and dropout-

based model noise. In addition, a semi-supervised loss function is 

applied to train the noisy student model, which acts as label noise 

injection. The performance of the proposed SED model is evalu-

ated on the validation set of the DCASE 2021 Challenge Task 4, 

and then, several ensemble models that combine five-fold valida-

tion models with different hyperparameters of the semi-super-

vised loss function are finally selected as our final models. 

Index Terms— Polyphonic sound event detection, 

self-training, noisy student model, semi-supervised loss 

function 

1. INTRODUCTION 

Sound event detection (SED) aims to detect and classify individual 

sound event categories and their onset and offset in diverse sound 

environments. SEDs can affect a wide range of applications related 

to sound sensing [1]. For example, acoustic monitoring can detect 

physical events, such as glass breakage, gunshots, tire slippage, or 

car crashes. SED can also be integrated into audio captions [2], 

audio monitoring in smart cities [3], life support and healthcare [4], 

etc. to better understand media content. 

In general, the SED task requires a large amount of labeled 

training data, thus hand-labeling these collected data is extremely 

costly. Moreover, such training data should be collected in a real 

environment in which a target application using SED could be de-

ployed [1]. As an alternative, limited strongly labeled data are used 

for model training by combining an ample amount of weakly la-

beled data whose labels only include the sound event types without 

any information on the timestamps of the events. Moreover, syn-

thetic audio data could be used to train the model. 

The DCASE 2021 Task 4 is the follow-up to DCASE 2020 

Task 4. Compared to DCASE 2020 Task 4, this year’s task in-

cludes an increased amount of strongly labeled data, while weakly 

labeled data and unlabeled data are identical in both year’s tasks. 

According to the results of the DCASE Challenge 2020 Task 4, 

some of top-ranked models were based on a mean-teacher model 

[5] trained by both weakly labeled and unlabeled data with con-

sistency regularization. Specifically, both the teacher and student 

model in the mean-teacher model [6] were constructed with the 

same network architecture, and the teacher model aimed to help 

the student model that was used for SED, where the model param-

eters of the teacher model were updated by the exponential moving 

average of the student model parameters. 

In this report, we propose an SED model based on the self-

training of the student model in the mean-teacher model. In other 

words, we first construct a residual convolutional recurrent neural 

network (RCRNN)-based mean-teacher model [7] and then train it 

using all the training data, including strongly labeled, weakly la-

beled, and unlabeled data. Then, the trained teacher model is used 

to predict the strong label for each of the weakly labeled or unla-

beled data. Next, a noisy student model, which is initialized by the 

student model of the mean-teacher model, is learned by using the 

given labels for strong labeled data and the predicted labels for 

weakly labeled or unlabeled data. Especially, the self-training ap-

proach in [8] is applied to train the noisy student model with noise 

injection. In particular, we consider three different noise-injection 

techniques: 1) feature noises, such as SpecAugment [9], mixup 

[10], and time-frequency shift [11], 2) dropout-based model noise, 

and 3) a semi-supervised loss function that acts as label noise in-

jection. 

Following this introduction, Section 2 summarizes the dataset 

and explains the pre-processing method used in this work. Then, 

Section 3 proposes self-training with a noisy student model and 

semi-supervised loss function, and Section 4 discusses the experi-

mental results on the validation set for DCASE 2021 Task 4. Fi-

nally, we conclude this report in Section 5.   
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2. DATASET 

The DCASE 2021 Challenge Task 4 consists of three different 

datasets for model training: 1) a weakly labeled training dataset 

(without timestamps), 2) an unlabeled in-domain training dataset 

without any label, and 3) a strongly labeled synthetic dataset. The 

weakly labeled and unlabeled in-domain training datasets are 

taken from the AudioSet [12], but the strongly labeled synthetic 

dataset is generated using the Scaper soundscape synthesis and 

augmentation library [13]. The weakly labeled training dataset 

contains 1,578 audio clips with weak annotation only. The unla-

beled in-domain training dataset and the strongly labeled dataset 

contain 14,412 and 10,000 audio clips, respectively. Each audio 

clip is stored as both mono- and stereo-channel signals that are 

sampled at 44.1 kHz with a maximum duration of 10 seconds.  

For a given dataset, we first take the mono-channel signals 

and resample them from 44.1–16 kHz. After that, each resampled 

audio signal is segmented into consecutive frames of 2048 samples 

with 256 samples of hop length. Then, a 2048-point fast Fourier 

transform (FFT) is applied to each separated signal, and a 128-

dimensional mel-filterbank analysis is performed for each frame. 

Since each 10-second audio clip is represented by 625 frames, the 

dimension of the input feature for the SED model is 1×625×128. 

Note here that zero padding is applied to the audio clips that are 

shorter than 10 seconds. Finally, the extracted mel-spectrogram 

features are normalized by the global mean and the standard devi-

ation over all the training audio clips. 

3. METHOD 

Fig. 1 shows the training procedure for the proposed SED model 

composed of the RCRNN-based mean-teacher model for predict-

ing strong labels and the self-trained noisy student model with 

noise injections and a semi-supervised loss function. The detailed 

explanation on the mean-teacher model and noisy student model 

will be given in the following subsections. 

3.1. RCRNN-based mean-teacher model 

As shown in Fig. 1, the first stage of the proposed SED model is 

based on an RCRNN-based mean-teacher model proposed in [7], 

which is also the same architecture in [14] by replacing the CRNN 

with an RCRNN. Table 1 shows the network architecture and hy-

perparameters of RCRNN used in the mean-teacher model.  

To begin with, the input feature of 625 frames is grouped to 

make a (625×128) spectral image, which is then used as the input 

feature for the RCRNN. As described in the table, the convolu-

tional blocks of the RCRNN are composed of one stem block and 

five residual convolutional blocks, where the stem block consists 

of two convolutional blocks with 16 and 32 kernels for the first 

and second convolutional blocks, respectively. Each convolu-

tional block has (3×3) kernels with a stride of (1×1), and it is fol-

lowed by batch normalization, GLU activation, and a (2×2) aver-

age pooling layer. Next, the convolutional block attention module 

(CBAM)-based attention [15] is applied to the output of each re-

sidual convolutional block. After finishing all the residual convo-

lutional blocks, the (128×156×1) feature map is applied to a re-

current block. The recurrent block consists of two bidirectional 

gated recurrent units (BiGRUs) to learn the temporal context in-

formation, where a rectified linear unit (ReLU) is used as an acti-

vation function for each GRU. The (156×256) output of the recur-

rent block is processed by an FC layer and then by a sigmoid func-

tion, resulting in a (156×10) output, where 10 denotes the number 

of sound events to be detected. Note that a (156×10)-dimensional 

output is related to a strong label including the sound event type 

and timestamp. Moreover, a weighted pooling layer is applied to 

 
Figure 1: Training procedure of the proposed SED model composed of the RCRNN-based mean-teacher model for predicting strong labels 

and the self-trained noisy student model with noise injections and a semi-supervised loss function. 
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the (156×10)-dimensional output to obtain a (1×10)-dimensional 

output that predicts a weak label for the given audio clip. 

The RCRNN-based mean-teacher model trained so far is 

used to generate predicted strong labels on weakly labeled and 

unlabeled datasets. Note here that the predicted labels are binary 

labels by applying a threshold to the sigmoid output, where the 

threshold is set to 0.5. By using these predicted labels, a noisy 

student model is trained, which will be described in the next sub-

section. 

3.2. Noisy student model 

The second stage of the proposed SED model is an RCRNN-based 

noisy student model whose network architecture is identical to the 

student model of the mean-teacher model. To train the noisy stu-

dent model, the strong labels predicted from the mean-teacher 

model in the first stage in the proposed SED model are used for 

weakly labeled or unlabeled data, while the given strong labels for 

strongly labeled data are used. After that, the input spectral image 

is changed by sequentially applying the noise-injection techniques 

of time-frequency masking from SpecAugment [9], mixup [10], 

and time-frequency shift [11]. Time-frequency masking operates 

by replacing values in the time and frequency domain with zero, 

and mixup generates a noisy data by mixing current input feature 

and another one to smooth the distribution of samples in the fea-

ture space. Time frequency shifting circularly shifts the input 

spectral image along the time and frequency axes for a random 

Gaussian noise with zero mean and a standard deviation of 4 and 

32 for the frequency and time axes, respectively. In addition, a 

dropout with a rate of 0.5 is applied to realize model noise for the 

noisy student model. Finally, during the training of the noisy stu-

dent model, a semi-supervised loss function was used for the re-

alization of the noisy target label. The semi-supervised loss func-

tion is defined as 

𝐿𝑠𝑒𝑚𝑖 = ∑ 𝐵𝐶𝐸(𝑖; 𝜃)

𝑖∈S

+ ∑ 𝐵𝐶𝐸𝑠𝑜𝑓𝑡(𝑖; 𝜃)

𝑖∈{𝑊,𝑈}

 
(1) 

where S, W, and U indicate the sets of strongly labeled, weakly 

labeled, and unlabeled data, respectively. In addition, 𝜃 denotes 

the RCRNN-based noisy student model. In addition, 𝐵𝐶𝐸(𝑖; 𝜃) is 

binary cross entropy (BCE), and 𝐵𝐶𝐸𝑠𝑜𝑓𝑡(𝑖; 𝜃) is the BCE between 

the binarized strong label from RCRNN-based mean-teacher 

model and the predicted output from 𝜃. In other words, 

𝐵𝐶𝐸𝑠𝑜𝑓𝑡(𝑖; 𝜃) is defined as 

𝐵𝐶𝐸𝑠𝑜𝑓𝑡(𝑖; 𝜃) = −(𝑦𝑖̅ 𝑙𝑜𝑔 𝑦̂𝑖,𝜃 + (1 − 𝑦𝑖̅) 𝑙𝑜𝑔(1 − 𝑦̂𝑖,𝜃) (2) 

where 𝑦̂𝑖,𝜃 is the output of the RCRNN-based noisy student model, 

𝜃, for the i-th audio clip. In (2), 𝑦̅𝑖 is an interpolated target be-

tween the binarized strong label, and it is computed as 

𝑦̅𝑖 = 𝛽𝑦̂𝑖,𝜃 + (1 − 𝛽)𝑦̂𝑖,𝜃𝑚
 (3) 

where 𝑦̂𝑖,𝜃𝑚
 is a binarized strong label of the RCRNN-based mean-

teacher model, 𝜃𝑚. 𝛽 is a hyperparameter for the loss function, 

and it is set for obtaining differently ensemble models. Conse-

quently, by using the noisy input spectral image, the noisy student 

model is trained with dropout and the semi-supervised loss func-

tion.  

After finishing the noisy student model training, the model 

parameters are copied into the teacher model of the mean-teacher 

model. Then, the strong labels for weakly labeled or unlabeled 

data are updated, which are also brought to the noisy student 

model as new target labels. This procedure for training the noisy 

student model and updating the labels is repeated once more.  

4. EXPERIMENTAL RESULTS 

4.1. Model training 

The neural network weights of the mean-teacher model were ini-

tialized by using Xavier initialization, but the biases were all ini-

tialized to zero. Next, the mini-batchwise adaptive moment esti-

mation (ADAM) optimization algorithm was applied, where 

dropout was also applied at a rate of 0.5. In addition, the learning 

rate was set according to the ramp-up strategy, where the maxi-

mum learning rate reached 0.001 after 50 epochs. For data aug-

mentation, we employed time-frequency shift [10] and mixup [11]. 

Meanwhile, the noisy student model was trained as described in 

Section 3.2 on a basis of 5-fold cross-validations where all the 

data in the training set were divided into 5 folds, and 4 out of 5 

folds were used for training, and the remaining fold was used for 

validation. Here, the learning rate was initially set to 0.001, and it 

was reduced by a simple learning rate schedule (commonly 

known as ReduceLRonPlateau in PyTorch).  

Table 1: Network architecture of a residual convolutional neural 

network in the RCRNN used in the mean-teacher model 

Name Layers Output shape 

Input 
layer 

Input: log-mel spectrogram 1×625×128 

Stem 
block 

(7 × 7, Conv2D , @16, GLU, BN) 

2×2 average pooling layer 
16×312×64 

(7 × 7, Conv2D , @32, GLU, BN) 

2×2 average pooling layer 
32×156×32 

Residual  
convolu-

tional 

block 

(
3 × 3, Conv2D , @64,

ReLU, BN
) ×2 

Self-attention module (CBAM) 

1×2 average pooling layer 

64×156×16 

(
3 × 3, Conv2D , @128,

ReLU, BN
) ×2 

Self-attention module (CBAM) 

1×2 pooling layer 

128×156×8 

(
3 × 3, Conv2D , @128,

ReLU, BN
) ×2 

Self-attention module (CBAM) 

1×2 average pooling layer 

128×156×4 

(
3 × 3, Conv2D , @128,

ReLU, BN
) ×2 

Self-attention module (CBAM) 

1×2 average pooling layer 

128×156×2 

(
3 × 3, Conv2D , @128,

ReLU, BN
) ×2 

Self-attention module (CBAM) 

1×2 average pooling layer 

128×156×1 

Recurrent 
block 

 (128 BiGRU cells) ×2 256×156 
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4.2. Discussion 

The performance of the proposed SED models was evaluated by 

using the measures defined in the DCASE 2021 Challenge Task 

4 [16], which were an event-based F1-score and a polyphonic 

sound detection score (PSDS) [17]. The PSDS was computed as 

two different scenarios by using a public open-source software 

where the parameters of (𝜌DTC, 𝜌GTC, 𝜌CTTC, 𝛼CT, 𝛼ST) were set to 

(0.7, 0.7, 0.0, 0.0, 1.0) for PSDS scenario 1 and (0.1, 0.1, 0.3, 0.5, 

1.0) for PSDS scenario 2, which were all followed by the rule de-

fined in [16]. Notice that the validation set was composed of 1,168 

audio clips with strong labels including time-stamps. 

Table 2 compares the performance between the baseline and 

different versions of the proposed SED models on the validation 

set of DCASE 2021 Challenge Task 4. The different versions of 

the proposed SED model included 1) an RCRNN-based mean-

teacher model that was the first stage of the proposed SED model, 

2) an RCRNN-based noisy student model that was trained by us-

ing all the training data without any cross-validation, and 3) three 

different ensemble models. To construct the ensemble models, 

each 5-fold model was trained using five different settings of the 

hyperparameter, 𝛽, of the semi-supervised loss function in Eq. (3) 

from 0.3 to 0.9 at a step of 0.2, which resulted in five different 

models for each fold. Then, the model that had the highest F1-

score among five different models was selected as the best model 

corresponding to this fold. After that, the 5-fold models were lin-

early combined to form an ensemble classifier, which was de-

noted as a 5-model ensemble, as shown in the fourth row of Table 

2. Instead of first selecting the best model for each fold according 

to different 𝛽s, we selected the top-ranked models from 25 mod-

els that were all the models from five different folds and five dif-

ferent 𝛽s. Based on this approach, we constructed two ensemble 

models, such as the Top1-5 ensemble and Top1-10 ensemble, 

which are shown in the fifth and sixth row of Table 2, respectively.  

As shown in Table 2, the RCRNN-based mean-teacher model 

achieved a higher F1-score, PSDS-scenario 1, and PSDS-scenario 

2 by 9.0%, 0.061, and 0.073, respectively, than the baseline. More-

over, the proposed noisy student model (single model) with feature, 

model, and label noise injections achieved further improvements 

of 3.2%, 0.031, and 0.059 for F1-score, PSDS-scenario 1, and 

PSDS-scenario 2, respectively, compared to the RCRNN-based 

mean-teacher model. Importantly, the ensemble model of the pro-

posed noisy student model, which was constructed by the Top1-10 

ensemble, provided the highest F1-score, PSDS-scenario 1, and 

PSDS-scenario 2 among all the possible ensemble models.  

5. CONCLUSION 

This report proposed a polyphonic SED model for the DCASE 

2021 Challenge Task 4. The proposed SED model was based on 

self-training with a noisy student model to deal with the different 

combinations of training datasets, such as the weakly labeled, un-

labeled, and strongly labeled synthetic datasets. Especially, the tar-

get label of each audio clip from weakly labeled or unlabeled da-

tasets was predicted using the RCRNN-based mean-teacher model. 

To realize self-training, data augmentation-based feature noise, 

dropout-based model noise, and semi-supervised loss function-

based label noise were injected into the noisy student model. Es-

pecially, the noisy student model was trained according to cross-

validations and different hyperparameter values of the semi-super-

vised loss function, which resulted in different ensemble models. 

The performance of different versions of the proposed SED model 

was evaluated on the validation set of the DCASE 2021 Challenge 

Task 4. Consequently, it was shown that the Top1-10 ensemble 

model improved the F1-score, PSDS-scenario 1, and PSDS-

scenario 2 by 15.3%, 0.115, 0.158, respectively, compared to the 

baseline. 
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Table 2: Comparison of performance metrics of the baseline and different versions of the proposed SED model on the validation set of 

the DCASE 2021 Challenge Task 4 where the check mark denotes which noise-injection technique is employed.  

Model 
Feature 
noise 

Model 
noise 

Label 
 noise  

Event-based  
F1-score 

PSDS-scenario 1 PSDS-scenario 2 

Baseline: CRNN-based mean-teacher model [16]  

(Single model) 
- - - 40.1% 0.342 0.527 

RCRNN-based mean-teacher model 

(single model) 
  - 49.1% 0.403 0.600 

RCRNN-based noisy student model 

(single model) 

   51.6% 0.425 0.649 

   52.3 % 0.434  0.659 

RCRNN-based noisy student model  

(5-model ensemble) 

   53.6% 0.449 0.675 

   53.9% 0.450 0.682 

RCRNN-based noisy student model  
(Top1-5 ensemble) 

   54.4% 0.451 0.679 

RCRNN-based noisy student model  

(Top1-10 ensemble) 
   55.4% 0.457 0.685 
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