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ABSTRACT

This technical report describes acoustic scene classification mod-
els from our submissions for DCASE challenge 2021-task1A. The
task is to build a system to perform classification on acoustic scene
data. The dataset has 10 acoustic scene labels. Our submissions are
Convolutional Neural Network (CNN)-based models which consist
of 3 convolutional layers and 1 fully-connected layer. We utilize a
small subset of deep audio embedding that has been pre-trained on
a large scale of a dataset. We also perform quantization and pruning
to reduce the complexity of models to meet the size limit of 128KB
for the challenge. We compare the performance of our models with
the baseline approach on the provided test dataset. The results show
that our models outperform the baseline system.

Index Terms— DCASE, Acoustic scene classification, convo-
lutional neural networks, pruning, quantization

1. INTRODUCTION

This technical report describes our approach to the DCASE chal-
lenge Task1A (low-complexity acoustic scene classification with
multiple devices) 1. The task of this challenge is to build a system
to classify a 10-second recording into each of 10 known acoustic
scenes where the audio file was recorded. One of the goals of the
challenge is to build lightweight models with a complexity limit of
128KB for non-zero parameters. To build low-complexity, but still
high-performing models with a limited training dataset, we utilize
a small part of an existing deep audio embedding with data aug-
mentation and model reduction techniques including post-training
quantization and pruning.

2. DATASET

The challenge dataset [1] contains audio recordings from 12 Eu-
ropean cities in 10 different acoustic scenes using 4 different de-
vices. It also includes synthetic data for 11 mobile devices. The 10
acoustic scenes include airport, indoor shopping mall, metro station,
pedestrian street, public square, street with medium level of traffic,
traveling by tram, traveling by bus, traveling by an underground
metro, and urban park. Each recording in the dataset is 10 seconds
and the total amount of audio is 64 hours. The development dataset
for the challenge is pre-partitioned into training (13,962 files) and
testing (2,970 files).

1http://dcase.community/challenge2021/
task-acoustic-scene-classification

Table 1: The model architecture of our submissions. Convolution
operations for all Conv layers are performed with a stride of 1 and
padding of 1. MP indicates 2D-Max Pooling (kernal size: 2 × 2,
stride: 2). *MP on Layer-3 is Max Pooling operation over time-
axis.

Layers Components Output shape

Input Mel-spectrogram 431×256
Layer-1 Conv (3×3, 64)→ Relu→MP 215×128, 64

Layer-2 Conv (3×3, 128)→ Relu→MP 107×64, 128

Layer-3 Conv (3×3, 64) → Relu → MP
→ *MP(over time-axis)

1×32, 64

Layer-4 FC (10)→ Softmax 10

3. SYSTEM

3.1. Model architecture

Table 1 shows the architecture of our models. They consist of 3 con-
volutional layers (Conv) and 1 fully-connected layers (FC). It takes
a mel-spectrogram of an audio file as an input representation and
its output is class probabilities of 10 acoustic scene classes. In the
table, filter sizes and the number of channels of convolutional layers
are represented as Conv (width × height, the number of channels).

While using deep audio embeddings such as VGGish [2] or
OpenL3 [3] is a good way of building a high-performing model
on limited training datasets, it is not easy to use them for the chal-
lenge due to its low-complexity requirement (128 KB). However,
prior works have shown that using only subsets of convolutional
layers of VGGish is still useful in various audio recognition tasks
[4, 5, 6, 7]. Therefore, we use pre-trained weights of the first 2
convolutional layers of VGGish to initialize the first 2 layers of our
models (Layer-1 and Layer-2 in Table 1). The pre-trained VGGish
model is publicly available 2.

Our models take a 10-second of mel-spectrogram and extract
features through the 3 convolutional layers, and then perform a
max-pooling operation only on time-axis of the output from Layer-3
(before fully-connected layers). We have tried other pooling oper-
ations such as mean, Softmax [8], but the max pooling showed the
best performance in our experiments.

2https://github.com/tensorflow/models/tree/
master/research/audioset
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Table 2: The number of non-zero parameters of our submissions
Layer CNN pr1 CNN pr2 CNN pr3 CNN pr4
Layer-1 385 365 404 385

Layer-2 41,038 39,625 43,312 41,058

Layer-3 55,005 53,473 57,141 55,028

Layer-4 19,970 19,965 19,984 19,968

Total 116,398 113,428 120,841 116,439

3.2. Data augmentation

To overcome the limited training data, we use two well-known data
augmentation strategies.

• Mixup [9]: We mix up a pair of randomly chosen training ex-
amples (i.e. input spectrogram) with their corresponding la-
bels to construct a new training sample. Mixup is performed
for each mini-batch during training. We perform Mixup with
alpha of 0.2.

• SpecAugment [10]: Frequency masking and time masking are
applied. For each mini-batch, randomly chosen 15% of fre-
quency channels and 40% of time-frames in an input spectro-
gram are masked.

3.3. Training procedure

To convert raw audio into input representations for our models,
we follow the data preparation step in [11]. Each audio file is re-
sampled to 22.05kHz mono and represented by a mel-spectrogram
with 256 mel-bins, a window size of 2048 and hop size of 512.
Given a 10-second audio file, the size of the input representation is
431× 256.

Layer-1 and Layer-2 are initialized with parameters from con-
volutional layers of the pre-trained VGGish model. The last convo-
lutional layer (Layer-3) and one fully-connected layer (Layer-4) are
randomly initialized. During training, the first two convolutional
layers (Layer-1 and 2) are fixed (not updated). The cross-entropy
loss and Adam optimizer with learning rates of 0.0002 are used. A
model is trained for 500 epochs and the model that shows the lowest
validation loss was chosen.

3.4. Model size reduction

In order to meet the model complexity requirement of the challenge,
we apply pruning on weights of our models. The L1 unstructured
pruning method provided in PyTorch library is used. We first prune
weights of a model, and then re-train the model on the training set
(Adam optimizer with learning rates of 0.0002). When a model is
re-trained as a part of the pruning process, none of the layers is
fixed. To test the effect of pruning rates, we apply 4 different prun-
ing rates on the initial model, resulting in 4 different models. Ta-
ble 2 shows the number of non-zero parameters of our submissions
(CNN pr1 to 4).

To further reduce the number of non-zero parameters of a
model, post-training quantization is applied to the pruned models.

Table 3: Log-loss and accuracy(%) for the baseline system and our
models. All the proposed models show higher average of class-wise
log-loss and accuracy than the baseline system.

Classes Baseline CNN pr1 CNN pr2 CNN pr3 CNN pr4

Airport 1.429
(40.5%)

1.180
(55.4%)

1.198
(55.4%)

1.212
(55.1%)

1.211
(56.4%)

Bus 1.317
(47.1%)

0.673
(75.8%)

0.672
(77.4%)

0.674
(76.1%)

0.756
(72.7%)

Metro 1.318
(51.9%)

1.028
(60.9%)

1.032
(60.3%)

1.004
(60.6%)

0.992
(60.9%)

Metro
station

1.999
(28.3%)

1.327
(53.9%)

1.235
(56.9%)

1.284
(54.5%)

1.287
(53.9%)

Park 1.166
(69.0%)

0.628
(77.4%)

0.650
(77.1%)

0.669
(74.1%)

0.641
(78.1%)

Public
square

2.139
(25.3%)

1.305
(51.9%)

1.346
(49.5%)

1.294
(53.2%)

1.204
(56.6%)

Shopping
mall

1.091
(61.3%)

1.048
(61.3%)

1.030
(64.3%)

1.084
(61.3%)

1.068
(62.3%)

Street,
pedes-
trian

1.827
(38.7%)

1.210
(53.5%)

1.220
(51.9%)

1.224
(51.5%)

1.386
(44.1%)

Street,
traffic

1.338
(62.0%)

0.729
(78.5%)

0.705
(78.5%)

0.718
(79.5%)

0.734
(79.5%)

Tram 1.105
(53.0%)

0.968
(64.9%)

0.995
(63.9%)

0.93
(66.6%)

0.811
(70.3%)

Average 1.473
(47.7%)

1.010
(63.4%)

1.008
(63.5%)

1.009
(63.3%)

1.009
(63.5%)

We use static-quantization method provided in PyTorch library 3.
It converts a data type of a model from float32 to qint8, so it re-
duces the size of a model by four times. After quantization, the size
of the larget model from our submissions (CNN pr3) becomes 118
KB (120,841 × 8bit / 8 bits per byte /1024 = 118) meets the model
size requirement (<=128KB)

4. EVALUATION

We evaluate our models on the provided validation dataset contain-
ing 2,970 recordings. As the performance metrics, macro-average
multiclass cross-entropy (i.e. log-loss) and classification accuracy
are used. For the challenge, submissions will be ranked by log-loss.
We compare our models with the baseline system which consists of
three CNN layers and one fully connected layer. More details of
performance metrics and baseline system can be found in the chal-
lenge website 4.

Table 3 shows class-wise log-loss and accuracy for each model.
It shows that our submissions achieved higher average of class-wise
log-loss than the baseline system.

3https://pytorch.org/docs/stable/quantization.
html

4http://dcase.community/challenge2021/
task-acoustic-scene-classification
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5. CONCLUSION

We presented low-complexity acoustic scene classification models
for DCASE challenge 2021-task1A. To build high-performing and
low-complexity models, we utilized a small subset of deep audio
embedding and applied post-training quantization as well as model
pruning techniques. We also used several well-known data aug-
mentation methods to boost the accuracy of our models on limited
datasets. The experiment results showed that our models outper-
formed the baseline system provided by the challenge organizers.
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