
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

A COMBINATION OF VARIOUS NEURAL NETWORKS FOR SOUND EVENT
LOCALIZATION AND DETECTION

Technical Report

Daniel Rho1∗, Seungjin Lee1∗, Jinhyeok Park1, Taesoo Kim1, Jiho Chang2, and Jong Hwan Ko1,

1 Sungkyunkwan University, Republic of Korea
{daniel03c195, lsg0385, tskim9439}@gmail.com, pjhsk1996@g.skku.edu, jhko@skku.edu

2 Korea Research Institute of Standards and Science, Republic of Korea
jiho.chang@kriss.re.kr

ABSTRACT

This technical report describes our approach to the DCASE 2021
task 3: Sound Event Localization and Detection (SELD). We pro-
pose a network architecture, a combination of various network lay-
ers, which can yield the optimal performance for the SELD task.
Furthermore, we propose which augmentation techniques to use to
boost the performance of our proposed model with a limited train
dataset. In order to further improve the performance, several tech-
niques were applied at training and post-processing stages, such as
adaptive gradient clipping, ensemble techniques, and class-wise dy-
namic thresholds. Evaluation results on the development dataset
showed that the proposed approach outperformed the existing base-
line model of the task.

Index Terms— Sound event localization and detection, neural
architecture search, augmentations

1. INTRODUCTION

The task is to identify the sound source and estimate its direction.
To tackle the issue, we followed the basic framework of the base-
line [1, 2]. Segmented features are given as inputs and SED branch
detects sounds for each class and frame. DOA branch predicts di-
rections in cartesian format. Our approach was to use the same
framework as the baseline[1] and only make progress on the model
structure and training, post-processing techniques. To outperform
the existing baseline model, we ran neural architecture search on
this task and determined the model structures to further use to train
on this task. Since available training samples were quite limited,
many augmentation techniques should be adopted to defer overfit-
ting. In the present study, several ensemble techniques and post-
processing methods, such as dynamic thresholds were adopted to
improve the performance.

2. PROPOSED METHOD

2.1. Input features

We followed the same feature extracting methods as the baseline
[1]. In terms of recording formats, first-order ambisonic (FOA) was
used for this work for two reasons. First, the baseline[1, 2] showed
better performance on FOA format than on tetrahedral microphone

∗Authors contributted equally to this work.

array (MIC) format. Second, FOA has more ways to augment an
audio spatially than MIC. Without disentangling sound sources, 16
transformations are applicable to FOA format, whereas only eight
transformations to MIC format. This will be explained more pre-
cisely in 2.3.2.

First-order ambisonic (FOA) formatted audio files have seven
channels: four log-mel spectrograms and three intensity vectors.
We extracted features under the same setting as [3]; 64 mel-bands,
a 40 ms window and 20 ms hop length at 24 kHz. To match the
number of filters of intensity vectors to that of mel-spectrograms,
mel-scale of 64 bands was applied to intensity vectors as in [3, 1].
Regarding normalization, we followed the same step as [3, 1].

2.2. Network architecture

Following the baseline of the task [1], the input shape of a spectro-
gram Dtime, Dfreq, Dchan were set to 300, 64, and 7 respectively.
As in [3], models were designed to predict the SED and DOA on
different branches and the idea to use a single branch [1] was not
taken.

Finding a suitable network structure for a particular task is not
an easy task, especially when there are not many researches on op-
timal neural architectures on the task. Inspired by [2], we chose
to search for optimal models in interpretable ways. After a few
rounds of architecture search, we fixed the model structure which
performed well on this task.

The final outcome consists of three main stages and SED,
DOA branches. Before the first stage, a single convolutional layer
and max pooling layer were used to match the number of label
frames. More specifically, in order to use the same inputs and la-
bels as the baseline [1], input shape of [300, 64, 7] were mapped to
[60, Dfreq, 32].

The first stage consists of convolutional layers and residual con-
nections. Following equations show the exact structure of the stage.

stage1(x) = β(α(x)),
α(x) = cat(act(bn(conv0(x)) + bn(conv1(x))), conv2(x)),
β(x) = cat(act(bn(conv3(x)) + x), x),

(1)

where bn denotes batch normalization[4] and act denotes activa-
tion function. For an activation function, ReLU [5] function was
used. cat means concatenation along channel axis. conv1 and
conv2 are strided convolutional layers with the kernel size of one

Detection and Classification of Acoustic Scenes and Events 2021 Challenge

Figure 1: Proposed neural architecture

to match the output feature map size of that of conv0. To pre-
vent shrinkage in time-domain, strides were not set in time axis
and only frequency dimension was allowed to set strides to a value,
greater than one. conv0 and conv3 share the same number of chan-
nels and kernel size. The output of the first stage has the shape of
[Dtime/5, D

′
freq, D

′
chan].

The second stage reshapes 2D outputs from the first layer to 1D
outputs [Dtime/5, D

′
freq ∗ D′chan] and applies a fully connected

layer, which is equivalent to applying an one-dimensional convolu-
tional layer with the kernel size of one. ReLU [5] function was used
and no batch normalization [4] was used in the second stage.

The third stage is a stack of conformer encoder layers[6]. More
precisely, it consists of two conformer encoder layers. Each layer
has four attentional heads and the size of heads were set to 24.

For SED and DOA branches, a single conformer encoder layer
and a stack of bidirectional gated recurrent units (GRU) [7] were
used respectively. DOA branch was designed to output directions in
cartesian formats as in [1]. SED branch has four attentional heads
like the third stage, but the size has doubled. Two bidirectional
GRU layers were used as a DOA branch. As in [3], sigmoid, hyper
tangent functions were used respectively for SED, DOA branches.

2.3. Augmentations

Augmentation methods are essential when it comes to the perfor-
mance, due to limited training samples. Simply scaling models
leads to improvement only on train dataset, and not on validation
nor test datasets. Furthermore, the challenge does not allow to use
an external dataset in any ways. Therefore, we came up with as
many augmentation techniques as possible to defer overfitting.

2.3.1. Masking

Among methods proposed in SpecAugment[8], augmentation by
masking input features was adopted. SpecAugment[8] introduced
two types of masks: time domain mask and frequency domain
mask. In this work, only frequency domain mask was adopted, be-
cause time domain mask was found to degrade the performance on
this task. We speculate that this degradation is due to the nature of
the task [1]. Unlike automatic speech recognition task, for which [8]
was proposed, detecting start-points and end-points of sound events
are critical. Time-masking makes it harder to predict exact timing
of sound events and this might have affected models in a negative
way.

2.3.2. FOA domain spatial augmentation

To improve the task performance of the system, FOA domain spa-
tial augmentation[9] was used to augment a limited train dataset.
Among augmentation techniques, already used in audio related
tasks, such as voice activity detection and automatic speech recog-
nition, the spatial augmentation method[9] seems to be one of the
simplest ways to spatially augment datasets to the best of our knowl-
edge. As in [9], channels of input features were randomly swapped
and theirs signs were randomly reversed to change the directions of
sound sources. Since spectrograms and intensity vectors are corre-
lated, they must be transformed equally.

Since disentangling multiple sound sources thoroughly in this
task is impossible, applicable transformation on FOA format is lim-
ited. A transformation is applicable only if location of each sound
source can change without distorting its sound, regardless of its lo-
cations. For example, changing the sign in x axis will affect direc-
tions of sound sources in the same way, regardless of their direc-
tions. For a FOA format, there are 48 applicable transformations.
Nevertheless, only 16 transformations were selected[9], due to the
fact that the official dataset for the task [1, 3] are known to have a
limited range of elevation angle between −45◦ and 45◦. Table 1
shows those 16 transformations.

(X, Y, Z) (-X, Y, Z) (X,-Y, Z) (-X,-Y, Z)
(Y, X, Z) (-Y, X, Z) (Y,-X, Z) (-Y,-X, Z)
(X, Y,-Z) (-X, Y,-Z) (X,-Y,-Z) (-X,-Y,-Z)
(Y, X,-Z) (-Y, X,-Z) (Y,-X,-Z) (-Y,-X,-Z)

Table 1: Combinations of dimensions and their signs

2.3.3. Random magnitude

The overall volume of an audio sample can be changed by simply
adding a random scalar value to a given log-mel spectrogram. We
varied the magnitude of the samples in two ways: one is to add a
constant to change the overall volume of a sample and the other is to
add different values for each frame. More specifically, two random
scalars were selected for the first and the last frames. The values
for other frames were calculated by linearly interpolating those two
values. This array of values were added to log-mel spectrograms.

The first approach, adding a random constant, leads to better
validation and test performance on the development dataset. The
second approach further improved the performance than the first
approach.

Detection and Classification of Acoustic Scenes and Events 2021 Challenge

2.4. Ensemble methods

Ensemble methods are frequently used to boost the performance.
These methods can be divided into two groups; intra-model level
and inter-model level ensemble methods. In this work, both types
of methods were used to improve the performance.

Among intra-model ensemble methods, two methods were used
for the task. The first method is boosted deep neural network
(bDNN) [10], which presented a way to aggregate intra-model
predictions. The second method is stochastic weight averaging
(SWA)[11], which averages the weights over the course of training
steps to form the final weights.

To adopt the first method, as in [10], a model makes predic-
tions on parts of an audio sequence and those predictions are ag-
gregated to form a single prediction for the given audio sequence.
More specifically, a model is given a window of 300 frames of in-
puts and the window slides with the stride of 5 frames. Overlapping
windows creates overlapping predictions and these overlapped pre-
dictions were averaged to form a single prediction about the input
sequence.

In terms of inter-model prediction aggregation, every model we
made has a similar performance on the development dataset. There-
fore, simple average predictions were used. Each model outputs a
prediction per an audio sample and these outputs were averaged to
form the final prediction.

2.5. Adaptive gradient clipping

The gradient clipping algorithm[12] is a way to clip gradients, used
to update model weights. The algorithm clips gradients, so that
the norm of gradients does not exceeds a hyperparameter λ. The
equation for the algorithm for the gradient G can be expressed as
follows:

G→
{
λ G
‖G‖ if ‖G‖ > λ

G Otherwise
(2)

The clipping algorithm can reduce the instability during training
process, especially when a learning rate is high. One drawback of
the algorithm is its high sensitivity to λ. To overcome this issue,
adaptive gradient clipping method [13] propose the following equa-
tion,

Gl
i →

λ‖W l
i‖∗F

‖Gl
i‖F

Gl
i if

‖Gl
i‖F

‖W l
i‖∗F

> λ

Gl
i otherwise.

 , (3)

where ‖W l
i ‖∗F equals max(

∥∥W l
i

∥∥
F
, ε) and ε was set to 1e-3. As

shown in the equation, [13] proposed two modifications. One is
layer and node-wise gradient clipping. l specifies a layer and i
specifies a node. The other modification is to use relative Frobe-
nius norm of gradients to that of weights. W l denotes weights of
layer l. Throughout this work, λ was set to 0.02.

3. EXPERIMENTS

Two different model structures were used for this task. We trained
several models using these two structures and selected a few of
them to form ensemble models. The two model structures share
the same model configuration and the only difference between them
is whether pooling size in frequency axis in the first convolutional
layer is one or two. The output channels and kernel size of the first
stage, more precisely, those of conv0 and conv3 were set to 96 and

3. The strides of the first stage were set to one for the time axis
and three for the frequency axis. The output channels of the second
layer were set to 192.

AdaBelief optimizer [14] was used to train models with the
learning rate of 0.001. The batch size was fixed to 256. For SED
and DOA, binary cross entropy and masked mean squared error
were used respectively[1]. As in [3], loss weights for SED, DOA
branches were set to 1 and 1,000. Stochastic weight averaging [11]
was applied after 80 epochs. Ensembles of three to four models
were used for final results.

Models were trained under different hyperparameter settings,
such as the magnitude of label smoothing [15] and λ in adaptive
gradient clipping[12]. Five single models were selected among oth-
ers, based on their test results. After that we selected three best
ensemble models. Tables 2 and 3 shows the test results on the de-
velopment set of single models and ensemble models respectively.

Models ER F DER(%) DERF SELD
model 1 0.4369 0.6688 15.74 0.7214 0.2836
model 2 0.4132 0.6894 15.48 0.7297 0.2700
model 3 0.4317 0.6675 13.65 0.6849 0.2887
model 4 0.4381 0.6733 15.71 0.7257 0.2816
model 5 0.4471 0.6684 14.90 0.7209 0.2851

Table 2: Test results of single models on the development dataset

Models ER F DER(%) DERF SELD
2+4+5 0.3895 0.7107 14.34 0.7252 0.2583
1+2+4+5 0.3829 0.7137 14.25 0.7249 0.2559
1+2+3+4+5 0.3843 0.7129 13.80 0.7140 0.2585
1+2+4+5 1 0.3807 0.7336 14.71 0.8101 0.2297

1 means the final results after applying dynamic thresholds.

Table 3: Test results of ensemble models on the development dataset

4. CONCLUSION

We proposed a framework on DCASE2021 task3 which can be
divided into three main parts. The first part is the model struc-
ture.The proposed combination of various types of layers has shown
a great improvement on the development dataset. The second part
is, adopted augmentation methods, such as frequency masking, spa-
tial augmentation, and random magnitude which significantly de-
ferred overfitting. Lastly, a number of inter and intra-model ensem-
ble techniques have shown effectiveness in terms of task perfor-
mance enhancement. Alongside the three main parts, by adopting
many other techniques at training and post-processing stages, we
were able to boost the performance even further and outperformed
the baseline system on the development dataset.

5. ACKNOWLEDGMENT

This work was partly supported by the Institute of Information and
Communication Technology Planning Evaluation (IITP) grant on
AI Graduate School Program (IITP-2019-0-00421) and AI Indus-
try Technology RD program (IITP-2021-0-00066), funded by the
Korea government.

Detection and Classification of Acoustic Scenes and Events 2021 Challenge

6. REFERENCES

[1] “Sound event localization and detection with directional
interference.” [Online]. Available: http://dcase.community/
challenge2021/task-sound-event-localization-and-detection

[2] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and
P. Dollár, “Designing network design spaces,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 10 428–10 436.

[3] A. Politis, S. Adavanne, and T. Virtanen, “A dataset of
reverberant spatial sound scenes with moving sources for
sound event localization and detection,” in Proceedings of
the Workshop on Detection and Classification of Acoustic
Scenes and Events (DCASE2020), November 2020. [Online].
Available: https://arxiv.org/abs/2006.01919

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in Proceedings of the 32nd International Conference on
Machine Learning, ser. Proceedings of Machine Learning
Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France:
PMLR, 07–09 Jul 2015, pp. 448–456. [Online]. Available:
http://proceedings.mlr.press/v37/ioffe15.html

[5] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines.” in ICML, J. Fürnkranz
and T. Joachims, Eds. Omnipress, 2010, pp. 807–
814. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icml/icml2010.html#NairH10

[6] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang,
J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, and
R. Pang, “Conformer: Convolution-augmented Transformer
for Speech Recognition,” in Proc. Interspeech 2020, 2020, pp.
5036–5040. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2020-3015

[7] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using RNN encoder–decoder for statistical
machine translation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available:
https://www.aclweb.org/anthology/D14-1179

[8] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition,”
in Proc. Interspeech 2019, 2019, pp. 2613–2617. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2019-2680

[9] L. Mazzon, M. Yasuda, Y. Koizumi, and
N. Harada, “Sound event localization and detection us-
ing foa domain spatial augmentation.” [Online]. Avail-
able: https://dcase.community/documents/challenge2019/
technical reports/DCASE2019 MazzonYasuda 93.pdf

[10] X.-L. Zhang and D. Wang, “Boosting contextual informa-
tion for deep neural network based voice activity detection,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 24, no. 2, pp. 252–264, 2015.

[11] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G.
Wilson, “Averaging weights leads to wider optima and better
generalization,” 2018.

[12] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty
of training recurrent neural networks,” in Proceedings of the
30th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, S. Dasgupta and
D. McAllester, Eds., vol. 28, no. 3. Atlanta, Georgia, USA:
PMLR, 17–19 Jun 2013, pp. 1310–1318. [Online]. Available:
http://proceedings.mlr.press/v28/pascanu13.html

[13] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-
performance large-scale image recognition without normal-
ization,” 2021.

[14] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Pa-
pademetris, and J. Duncan, “Adabelief optimizer: Adapting
stepsizes by the belief in observed gradients,” Conference on
Neural Information Processing Systems, 2020.

[15] G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and
G. E. Hinton, “Regularizing neural networks by penalizing
confident output distributions,” CoRR, vol. abs/1701.06548,
2017. [Online]. Available: http://arxiv.org/abs/1701.06548

