
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

IRIT-UPS DCASE 2021 AUDIO CAPTIONING SYSTEM
Technical Report

Etienne Labbé, Thomas Pellegrini

IRIT (UMR 5505), Université Paul Sabatier, CNRS, Toulouse, France
{etienne.labbe, thomas.pellegrini}@irit.fr

ABSTRACT

This document provides a description of our seq-to-seq models used
for audio captioning in the task 6 of the DCASE 2021 challenge.
Four submissions were made with two different models, a “Listen-
Attend-Tell” and a “CNN-Tell”, and two different algorithms for
inference, greedy and beam search.

Index Terms— Automated audio captioning, convolutional en-
coder, recurrent decoder

1. INTRODUCTION

This year, the IRIT-UPS approach to the DCASE 2021 audio cap-
tioning Task 6 uses a sequence-to-sequence model Listen-Attend-
Spell [1] architecture, renamed ”Listen-Attend-Tell” (LAT), and a
convolutional recurrent model that we refer to as ”CNN-Tell”. Our
implementation uses PyTorch [2] and PyTorch-Lightning [3] and
will be available after the end of the challenge on Github 1.

2. SYSTEMS DESCRIPTIONS

2.1. Data processing

Clotho [4] is the dataset provided by the organizers of the challenge
for this year. We used Clotho v2.1, which contains 6974 audios
clips of 15 to 30 seconds with 5 captions describing each audio file.
We resample all the audio files from 44.1KHz to 32KHz, and we
use log-Mel spectrograms as input to the models. The parameters
of the spectrogram depends on the model used. We removed all
punctuation in the captions. The vocabulary is built based on the
Clotho development subset, and contains 4368 words in all our ex-
periments.

2.2. Models

We used the same Listen-Attend-Tell (LAT) [1] as our last year par-
ticipation [5]. The encoder is a pyramidal bidirectional LSTM and
the decoder an attention-based LSTM network. The model contains
2.9 million parameters. All the details about the model architecture
can be found in our last year technical report.

We introduced a new architecture, this year, called CNN-Tell.
This model is comprised of an encoder-decoder architecture, with
a convolutional model as encoder to produce audios features, and
the same decoder as the LAT one. The encoder is taken from the
Pretrained Audio Neural Networks study [6], more specifically the
”Cnn14 DecisionLevelAtt” model, originally used for frame-wise

1https://github.com/Labbeti/dcase2021task6

sound event detection. The global architecture is described in Ta-
ble 1 and the ConvBlock component in Table 2. This CNN is made
up of 14 layers, hence the name.

We used the weights of this CNN14 pre-trained on AudioSet,
available on Zenodo 2. We kept the same parameters and layers, ex-
cept that we removed the original classifier layer used for AudioSet.
All the weights of the encoder are frozen and only the decoder is
trained. We tried to also fine-tune the CNN14 encoder, but no gain
was obtained doing so.

Layer Architecture

input Log-Mel spectrogram

bn0 BatchNorm2d
conv block1 ConvBlock(64)
conv block2 ConvBlock(128)
conv block3 ConvBlock(256)
conv block4 ConvBlock(512)
conv block5 ConvBlock(1024)
conv block6 ConvBlock(2048)

fc1 Linear(2048)

output Audios embeddings

Table 1: The encoder architecture used as encoder of CNN-Tell.

Layer Architecture

conv1 Conv2d(N)
bn1 BatchNorm2d

conv2 Conv2d(N)
bn2 BatchNorm2d

avgpool AvgPool2d

Table 2: The ConvBlock architecture with N filters used in CNN-
Tell.

The CNN14 audio output embeddings have a shape (batch size,
embedding size, nb frames). These embeddings are used as input
of two projection layers in parallel to compute the key and value
inputs used in the LSTM decoder. The final model contains 84.5
million parameters, but only 1.6 million trainable parameters (the
decoder part).

In both models, the optimization criterion used is standard
cross-entropy. The validation loss was used for monitoring the best
model kept for evaluation.

2https://zenodo.org/record/3987831



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

Submission Model Beam BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr SPICE SPIDEr

- Baseline - 0.378 0.119 0.050 0.017 0.078 0.263 0.075 0.028 0.051

1 LAT - 0.435 0.229 0.129 0.069 0.252 0.195 0.136 0.067 0.101
2 LAT 10 0.452 0.262 0.168 0.102 0.249 0.193 0.172 0.071 0.122
3 CNN-Tell - 0.523 0.316 0.191 0.109 0.309 0.231 0.287 0.104 0.195
4 CNN-Tell 10 0.541 0.358 0.243 0.159 0.327 0.235 0.351 0.110 0.231

Table 3: Results on the evaluation subset of Clotho v2.1. Higher score is better.

2.3. Hyper-parameters

In all our experiments, we used the Adam optimizer [7] with a learn-
ing rate set to 5 · 10−4, weight decay set to 10−6, β1 set to 0.9, β2
set to 0.999 and ε set to 10−8. We trained ours models for 50 epochs
and the batch size is set to 8.

We also used a cosine-scheduler which decreases the learning
rate at each epoch using the following equation:

lrk = lr0
1

2

(
1 + cos

(kπ
K

))
(1)

with k being the current epoch index, and K the total number of
epochs.

The log-Mel spectrograms have 64 Mel bands and a window
size of 1024 samples. The hop length is equal to 512 for the LAT
model and 320 for CNN-Tell. The spectrogram power is set to 1 for
LAT model and to 2 for CNN-Tell.

2.4. Beam search

For inference, we used the beam search algorithm to produce results
better than with greedy search. We compute a log-score described
in Eq. 2 based on the log-probabilities. We tried sentence length
normalization, but it did not improve performance in our experi-
ments.

log p(w1, ..., wL|x) =
L∑

i=1

log p(wi|x,w1, ..., wi−1) (2)

3. RESULTS

Table 3 shows the results of the baseline and the four submissions,
with the nine metrics on the Clotho v2.1 evaluation subset. The best
SPIDEr score is 0.231 and is achieved by the CNN-Tell model with
a beam size of 10. Larger beam sizes did not bring improvements.

4. ACKNOWLEDGMENT

We used the OSIRIM platform, administered by IRIT and supported
by CNRS, the Region Midi-Pyrénées, the French Government and
ERDF (http://osirim.irit.fr/site/en). We also used the HPC resources
from CALMIP (Grant 2020-p20022).

5. REFERENCES

[1] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen,
Attend and Spell,” arXiv:1508.01211 [cs, stat], Aug. 2015,
arXiv: 1508.01211. [Online]. Available: http://arxiv.org/abs/
1508.01211

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “Pytorch: An imperative style, high-performance deep
learning library,” in proc. NeurIPS, 2019, pp. 8026–8037.

[3] W. Falcon and .al, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3,
2019.

[4] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An
Audio Captioning Dataset,” arXiv:1910.09387 [cs, eess],
Oct. 2019, arXiv: 1910.09387. [Online]. Available: http:
//arxiv.org/abs/1910.09387

[5] T. Pellegrini, “IRIT-UPS DCASE 2020 audio captioning sys-
tem,” DCASE2020 Challenge, Tech. Rep., June 2020.

[6] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “PANNs: Large-Scale Pretrained Audio Neural
Networks for Audio Pattern Recognition,” arXiv:1912.10211
[cs, eess], Aug. 2020, arXiv: 1912.10211. [Online]. Available:
http://arxiv.org/abs/1912.10211

[7] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980 [cs], Jan. 2017, arXiv:
1412.6980. [Online]. Available: http://arxiv.org/abs/1412.6980


