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ABSTRACT

In this technical report, we describe our submission system for D-
CASE2021 Task4: sound event detection and separation in domes-
tic environments [1]. In our submissions, two different deep models
are investigated. The first one is a mean-teacher model with convo-
lutional recurrent neural network (CRNN). The second one is a joint
framework with adaptive focal loss based on the Guided Learn-
ing architecture. To improve the performance of system, we pro-
pose to use various methods such as the specaugment data augmen-
tation method, adaptive focal loss, event specific post-processing.
To combine sound separation with sound event detection, we train
models using the outputs of the sound separation baseline system.
We demonstrate that the proposed method achieves the event-based
macro F1 score of 44.4%, 0.428 in PSDS1 and 0.736 in PSDS2 on
the validation set.

Index Terms— Acoustic event detection, Semi-supervised
learning, Adaptive focal loss, Sound separation

1. INTRODUCTION

Sound event detection (SED) aims to detect and identify each sound
event category and its onset and offset in the audio sequence. Re-
cently, SED research includes audio event classification, abnormal
sound detection, and automatic monitoring [2–4], etc. However,
there are not many practical applications for sound event detection.
Due to the diversity and complexity of real-life sound field envi-
ronments, sound event detection can only be barely used in a few
simple scenarios. The SED task requires a large amount of labeled
training data, and these data cost a lot of cost for a large number of
people to perform sound event categories and its onset and offset.
In order to solve the problem of high cost of acquiring data labels
in SED tasks, one solution is to use synthetic audio data to train the
model. Current computer technology can synthesize high-quality
audio sequences, and can generate a labeled synthetic audio dataset
(such as DCASE2021 task4) for SED model training.

In this study, we introduce two systems for SED task. The first
one is mean-teacher model (MT) [5], which is based on the official
baseline system. The second one is a joint framework with adaptive
focal loss based on the Guided Learning (GL) architecture [6, 7].
Moreover, two new methods are proposed to improve this system.
To address the class imbalance of large-scale weakly labeled and
unlabeled training data and different level of classification and de-
tection difficulty of each target event, we propose a new training
strategy with an adaptive focal loss together to enable an effective
and more accurate model training. Furthermore, an event-specific

post processing is designed to fix the prediction errors that result
from outliers.

To incorporate sound separation (SS) into sound event detec-
tion, we fine-tune our SED models using the outputs from the of-
ficial sound separation baseline system. Then, we fuse the event
detection results of models trained by real data and separated data
to get the final SS-SED ensemble system result.

2. METHODS

2.1. Network Architecture

2.1.1. Mean Teacher Model

The baseline system is inspired by the winning system from D-
CASE 2018 Task 4 by Lu [5]. It uses a mean-teacher model which
is a combination of two models: a student model and a teacher mod-
el (both have the same architecture). The student model is the final
model used at inference time, while the teacher model is aimed at
helping the student model during training and its weights are an ex-
ponential moving average of the student model’s weights. To carry
out the concept, the mean squared error between the outputs of the
student model and the teacher model is added into loss function.
And the network architecture is formed as a convolutional recurren-
t neural network (CRNN) [8], which consists of 7 layers of CNN
blocks, 2 layers of bidirectional gated recurrent unit (GRU) cells,
and an attention part for producing outputs. More details can be
found in [9].

2.1.2. Guided Learning Model

The joint model architecture we proposed for both weakly super-
vised AT and AED consists of three parts: the teacher model, stu-
dent model and event-specific post processing module. Both teach-
er and student models are also Convolution Recurrent Neural Net-
works (CRNN), but with different number of CNN blocks. The
teacher model has five double-layer CNN blocks with a larger time
compression scale that professional for a better audio tagging, while
the student model only has three single-layer CNN blocks with no
temporal compression scale for a better event boundary detection.
This joint model is inspired by the Guided Learning (GL) model
in [7]. But it is different from both the GL and traditional CRN-
N frameworks, besides the proposed deep feature distillation, the
event-specific post processing and the two-stage model training s-
trategy with adaptive focal loss, we also divide the AED and AT
tasks into two independent branches. More details can be found
in [6].
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2.2. Data Augmentation

2.2.1. Mixup

Mixup [10] can improve the performance of deep neural network
in many machine learning tasks by smoothing the distribution of
samples in the feature space. This method creates a new data by
interpolate between two raw data, while the labels are interpolated
in the same way. The mixup smoothes out the decision boundary
by adding pseudo data generated by mixing different data points
(x1;x2) and the corresponding labels (y1; y2). The mixup is for-
mulated as follows:

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ) yj (1)

where xi and xj is two random chosen features, yi and yi is
corresponding label respectively. λ is a random variable which fol-
lows the beta distribution. In our system, we used α =0.2

2.2.2. SpecAugment

SpecAugment [11] is an effective approach which shows signifi-
cant performance improvement in acoustic speech recognition re-
cently. It replaces values by zeros in randomly chosen time-
frequency bands. SpecAugment includes three data augmentation
methods, time warping, masking blocks of frequency channels, and
masking blocks of time steps. In our method, we use frequency
masks and time warping for data augmentation. All augmentations
of SpecAugment are directly operated on the log-Mel filterbanks,
which can save a lot of calculation time.

2.3. Combination of sound separation and SED

We also investigate to use the sound separation outputs to fine-
tune the SED model for improving system performances. Instead
of jointly End-to-End training of SED and separation system, we
choose to directly use the pre-trained official sound separation base-
line [12, 13] to perform the sound separation for all the training,
development and evaluation data. Specifically, we use all of the
separated clips to fine-tune our SED model (with the batch normal-
ization layer weights were kept frozen). The proposed approach is
significantly different from the one that used in the challenge of-
ficial sound separation baseline. In the official baseline separation
system, it has 8-channel separated sources, but for the real SED
dataset, a single audio clip even contains less than 8 events. So the
separation results of the baseline system will include background
events. Using all the separated sources to train the SED model can
potentially introduce a mismatch. So we use a pre-trained SED clas-
sifier to pre-classify the 8-channel separated sources of each input
audio to obtain their prediction labels. These labels are then used to
fine-tune the MT SED system.

2.4. Event-specific post processing (ESP)

Median filtering (MF) has proved effective in smoothing the noisy
outputs of the student model for AED tasks [9]. Conventional MF
with fixed window size is no longer suitable for this task. Recent
works in [7, 14] used group of median filters with adaptive window
size by calculating the average duration of events with strong labels
on the development set. However, the duration of each target event
is not an uniform distribution, using the average event duration to

optimize the MF window size may not the optimal. So we propose
to use event-specific MF window size as:

Wc =

(
1

Nc

Nc∑
i=1

Li

)
· η (2)

where Wc, c = 1, 2, ..., C is the MF window size of event class
c, Nc is the segment index for the inflection point of cumulative
distribution of short-to-long sorted segments of c-class target event.
Li is duration of i-th segment for event c. η is a scaling factor and
set to 1/3 in our experiments. All the training clips with strong
labels are used to computeWc.

2.5. Adaptive focal loss

Motivated by the principle of focal loss in [15], here we aim to
improve the model training by combining the above BCE loss with
an adaptive focal loss that defined as follows:

Laf = − 1

CK

C∑
j=1

K∑
i=1

(
1− pγij

)
· log (pij) (3)

where γ is a scaling factor to control the loss contribution of pos-
terior probability pij for i-th clip, j-th target-event category. K is
the total size of audio clips with both weakly and strong labels in a
minbatch, C is the number of target-event categories.

3. EXPERIMENTS

3.1. Datasets and Features

The training set of our SED system contains a weakly-labeled train-
ing set (1578 clips), an unlabeled training set (14412 clips), and
a synthetic strongly labeled set (10000 clips). The validation set
contains 1168 strongly-labeled clips. The public test set contains
692 strong-labeled clips. We extract 128-dimensional log-Mel fil-
terbanks from the input audio. The window size and the hop size are
2,048 points and 256 points, respectively, in 16 kHz sampling. We
fix the length of the feature sequence to 625 frames (corresponding
to around 10 seconds). To make the length of feature sequences the
same, we perform zero-padding for shorter sequences and trunca-
tion for longer sequences from their last frames. Then, we perform
the normalization to make the feature sequences have zero means
and unit variances over the training data.

3.2. Setup

For the data augmentation, we apply 25% mix operation in a mini-
batch for mixup method and apply 50% operation in a mini-batch
for sepcaugment method in our system. For the SS-SED system, we
use the baseline system of sound separation to separate the training
set of the SED.

4. RESULTS

All techniques are examined on DCASE 2021 Task4 validation set
and results are shown in Table 1. ‘SED-Baseline’ and ‘SS+SED-
baseline’ are two official baselines. ‘MT’ and ’GL’ are our baseline
models without the proposed ESP, specaugment(Spec), adaptive fo-
cal loss(AFL) and the sound separation(SS).
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Table 1: F1-scores (%) and PSDS metrics of the proposed methods.
ID Method PSDS1 PSDS2 Collar-based F1(%)

0 SED-Baseline 0.342 0.527 40.1
1 SS+SED-baseline 0.373 0.549 44.3

2 MT+ESP 0.353 0.569 40.6
3 GL+ESP 0.263 0.531 38.1

4 MT+ESP+Spec 0.397 0.640 41.4
5 GL+ESP+Spec 0.281 0.555 38.5

6 MT+ESP+Spec+AFL 0.418 0.717 42.0
7 GL+ESP+Spec+AFL 0.328 0.575 41.0

8 MT+ESP+Spec+AFL+SS 0.428 0.736 44.4

In Table 1, we see that the last method with all the proposed
techniques achieves the best results for both AED and AT tasks,
it outperforms the ‘SS+SED-baseline’ system significantly by ab-
solute 5.5% and 18.7% in PSDS1 and PSDS2. However, the
’GL+ESP+Spec+AFL’ system which we proposed based on GL on-
ly achieved 4.8% improvement in PSDS2.

5. CONCLUSION

In this technical report, we have described the techniques that used
in our submission systems for DCASE2021 Task4. Our system
has been developed based on two model architecture, including the
Mean Teacher model and the Guided Learning model. The data
augmentation techniques, the event-specific post-processing, adap-
tive focal loss, and the sound separation are also used to further
improve system performances. Experimental results on the valida-
tion set demonstrate that these techniques are helpful for improving
the sound event detection performance, and the Mean teacher model
significantly outperforms the baseline. Unfortunately, the proposed
Guided Learning system only achieved small improvement over the
baseline. Investigating the class-wise performance more careful-
ly and generalizing the proposals to other acoustic event detection
tasks to develop more effective technique is our future work.
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