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ABSTRACT

In this technical report, we detail our submitted systems for task4
of DCASE2021: Sound Event Detection and Separation in Domes-
tic Environments. Our systems exploit both recurrent structure and
transformer structure to model the complicated dynamics in real life
domestic audio data. In addition to prevalent tricks such as semi-
supervised mean-teacher learning, data augmentation and ensem-
ble, we find that different models exhibit differently under the two
scenarios, which emphasize different system properties. By inte-
grating advantages of both the recurrent and transformer structures,
our proposed systems achieve an overall poly-phonic sound event
detection scores (PSDS-scores) of 1.171 (PSDS-scenario1 + PSDS-
scenario2) on the hold-out test set of the development dataset, out-
performing the baseline system by 34.8%.

Index Terms— Sound event detection, convolutional recurrent
neural network, transformer, semi-supervised learning

1. INTRODUCTION

In this technical report, we describe our submitted systems for task
4 of the DCASE2021 challenge: Sound Event Detection and Sepa-
ration in Domestic Environments [1]. Different from previous chal-
lenges, this year’s evaluation criteria takes different real-life scenar-
ios into consideration, thus leading to two different settings: sce-
nario1 emphasizes fast reaction of systems upon sound events while
scenario2 imposes more penalty on the confusion between sound
event classes [2, 3]. Based on the experimental observations, we
propose to deal with each scenario by specific model:

• Scenario1: we exploit the popular convolutional recurrent neu-
ral network (CRNN) [4] to capture the temporal variations of
audio signal, providing fast reaction upon event detection.

• Scenario2: we make use of the newly proposed convolution-
augmented transformer (Conformer) [5, 6] which shows favor
for avoiding confusion between sound event classes.

Along with the above models, we implement following tricks to
improve the model performance:

• Mean-teacher training framework [7] to fully exploit the unla-
belled in-domain data for better semi-supervised learning.

• Mixup and frame-shift [8] data-augmentation strategies to im-
prove the generalization ability of detection systems.

• Ensemble [9] and class-wise median-filter to reduce model
variance and smooth probability predictions.

We carry out sufficient experiments on the development dataset
of DCASE2021 task4 to verify the effectiveness of our proposed
SED system. Evaluation results on the test dataset show that the
proposed scenario-specific detection strategy can significantly im-
prove the overall performance. We achieve an overall PSDS-score
of 1.171, which outperforms the baseline by 34.8%.

This technical report is organized as follows: Section. 2 details
the models and tricks we use to train the SED systems; In Section 3,
we demonstrate the effectiveness of our proposed scenario-specific
detection strategy through adequate experiments; Finally, we con-
clude in Section 4.

2. METHOD

2.1. Data

We train and evaluate the proposed models on the development
dataset of DCASE2021 task4, summarized as following:

• Weak-Train: 1578 weakly annotated samples
• Unlabeled-Train: 14412 unlabeled in domain samples
• Synthetic-Train: 10000 synthetic strongly labeled samples
• Strong-Valid: 1168 strongly labeled samples
• Synthetic-Valid: 2500 synthetic strongly labeled samples

We take all the Unlabeled-Train, Synthetic-Train and part of the
Weak-Train for training; All of the Synthetic-Valid and part of the
Weak-Train constitutes the validation set; We evaluate model per-
formance on the Strong-Valid, which is held-out during the whole
training process.

2.2. Feature

We follow the baseline system to extract log-mel features with hop
size of 256 and window length of 2048, on the resampled 16kHz
audio data. 128 mel-filters are applied to obtain the final frame-wise
features. For normalization, we calculate the mean and standard
deviation of log-mel features across all the samples in Weak-Train
and Unlabeled-Train, these statistics are used during both training
and inference time.

Besides the log-mel features, we also experiment with mfcc and
pitch features [9], which nevertheless brings no improvements. Nei-
ther do the data augmentation strategies such as time-stretch and
pitch-shift [10] work in the current task.
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2.3. Model

As stated above, this year’s task4 takes two scenarios into consid-
eration: scenario1 requires fast reaction upon the occurrences of
sound events while scenario2 is more sensitive to confusion be-
tween different event classes. We propose a scenario specific strat-
egy to deal with these two scenarios separately: CRNN exhibits
higher PSDS-scenario1 score and Conformer performs better under
scenario2. Structures of the proposed CRNN and Conformer are
detailed as following:

CRNN: The convolutional feature extractor of the CRNN is a
stack of 7 convolution layers, each with kernel size of (3, 3) and
stride size of (1, 1) . Each convolution block is followed by ReLU
and batch-normalization. Moreover, average-pooling with kernel
size of 2 is applied along the frequency-axis after each block. On the
temporal dimension, we only apply average-pooling after the first
two convolution blocks, in order to maintain adequate resolution.
Consequently, the output resolution of the CRNN model is reduced
by 4-times. A two-layer bidirectional-gru with hidden size of 128
is stacked upon the feature extractor, the outputs of which are feed
into a fully-connected layer and sigmoid non-linearity to predict the
probabilities of the 10 sound event classes.

Conformer: We exploit similar feature extractor with that of
the CRNN, except that we use glu as the activation functions and
apply one more average-pooling layer along the temporal dimen-
sion, resulting in resolution reduction of 8 times. We substitute gru
with a 7-block conformer structure [5, 6] to better capture the dis-
tinctions between sound event classes.

2.4. Model Training

Despite the BCE loss on strongly-labelled data and weakly-labelled
data, we follow [7] to apply mean-teacher semi-supervised learning
method to impose consistency constraint (MSE-loss) on the teacher
model and student model, thus fully exploiting the unlabelled data.
All models are trained with 200 epochs using Adam.

For the synthetic validation data, we compute the PSDS val-
ues using 10 operating points, linearly distributed from 0.1 to 0.9.
By this means, we can better align with the final criterion on test
dataset. For the weakly labelled validation data, we compute the
class-averaged F1-score (macro-F1). Above two metrics are further
accumulated for best model checkpoint. Mixup and frame-shift [8]
are applied on the data separately, each with a probability of 0.5.

2.5. Ensemble and Post-processing

We randomly split the Weak-Train dataset into 5-fold for ensem-
ble. On each division of the dataset, models (both CRNN and Con-
former) are trained from scratch and the probabilities of which are
averaged during the inference process. Median filter is applied to
smooth the prediction results. For each sound event, we search for
the optimal median filter length from 1 to 49 with increment of 2.

3. EXPERIMENTS

As shown in Table. 3, we exhibit the evaluation metrics of our pro-
posed CRNN and Conformer model, togher with that of the baseline
model. For clarity, we omit experiments of model structure search
and feature selection, only show the best results with and without
data augmentation.

Method PSDS1 PSDS2 Intersection-F1
baseline 0.342 0.527 76.6%
CRNN 0.408 0.622 79.4%

Conformer 0.188 0.728 74.5%
CRNN + DA 0.419 0.638 80.5%

Conformer + DA 0.172 0.752 74.3%

Table 1: Performance of our proposed CRNN and Conformer
model. ”DA” indicates data augmentation (mixup and frame-shift).

As can be seen, for scenario1, the best performance is achieved
by CRNN with data augmentation; For scenario2, the best perfor-
mance is achieved by Conformer with data augmentation. Exper-
imental results show that the CRNN model has more advantages
when accurate time boundary detection of sound events is required,
while Conformer shows more favor for circumstances when confu-
sion between different sound events is given more concern. Finally,
by considering the best performance in each specific scenario, we
achieve an overall PSDS-score (PSDS1-score + PSDS2-score) of
1.171, outperforming the baseline by 34.8%.

4. CONCLUSION

In this technical report, we detail our approach for DCASE2021-
task4. Through thorough experiments, we find that when we con-
sider different scenarios that emphasize different system properties,
a more favorable strategy is to exploit scenario-specific network
structure for sound event detection. By taking the advantages of
scenario-specific models, we can achieve significant better perfor-
mance in terms of the overall metric.

5. REFERENCES

[1] N. Turpault, R. Serizel, A. Parag Shah, and J. Salamon,
“Sound event detection in domestic environments with
weakly labeled data and soundscape synthesis,” in Workshop
on Detection and Classification of Acoustic Scenes and
Events, New York City, United States, October 2019.
[Online]. Available: https://hal.inria.fr/hal-02160855

[2] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics
for polyphonic sound event detection,” Applied Sciences,
vol. 6, no. 6, p. 162, 2016. [Online]. Available: http:
//www.mdpi.com/2076-3417/6/6/162

[3] C. Bilen, G. Ferroni, F. Tuveri, J. Azcarreta, and
S. Krstulovic, “A framework for the robust evaluation of
sound event detection,” arXiv preprint arXiv:1910.08440,
2019. [Online]. Available: https://arxiv.org/abs/1910.08440

[4] E. Cakır, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen, “Convolutional recurrent neural networks for
polyphonic sound event detection,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 6,
pp. 1291–1303, 2017.

[5] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, et al., “Conformer:
Convolution-augmented transformer for speech recognition,”
arXiv preprint arXiv:2005.08100, 2020.

[6] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda,
and K. Takeda, “Convolution-augmented transformer for



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

semi-supervised sound event detection,” DCASE2020 Chal-
lenge, Tech. Rep., June 2020.

[7] A. Tarvainen and H. Valpola, “Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results,” arXiv preprint
arXiv:1703.01780, 2017.

[8] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[9] R. Lu and Z. Duan, “Bidirectional gru for sound event de-
tection,” Detection and Classification of Acoustic Scenes and
Events, 2017.

[10] J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classi-
fication,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, 2017.


