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ABSTRACT

This technical report presents our submission to the IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE) 2021 for Task1 (Acoustic Scene Classification),
subtask A (Low-Complexity Acoustic Scene Classification with
Multiple Devices). The proposed system is a simple state-of-the-
art approach employing wavelet based mel scaled representation
for acoustic signals and a CNN classifier. We use data augmen-
tation to handle device mismatch and post training quantization of
network weights to enforce low complexity in terms of model size.
The submitted system surpasses the baseline system utilizing CNN
developed for this subtask.

Index Terms— Acoustic Scene Classification, Convolution
Neural Network, Deep Learning, biorthogonal wavelet

1. INTRODUCTION

Acoustic Scene Classification (ASC) [1] is aimed at associating a
semantic label to an acoustic signal to characterize the environment
in which it was recorded. This research field has been progressively
growing in the last few years due to its enormous application po-
tential in context aware devices and in intelligent monitoring de-
vices [2]. This is evident from the increased participation in the
events like IEEE AASP Challenge on Detection and Classification
of Acoustic Scenes and Events (DCASE). With the emergence of
deep learning algorithms, ASC systems have seen drastic improve-
ment in accuracy. However, the focus of ASC has shifted from
improvement in accuracy to incorporating real world scenarios.

Two prime concerns in real world scenarios are generalization
capability and computational limitations. In the real world, it is sen-
sible to assume that any ASC system will have audio samples from
a large variety of recording devices. Additionally, for deployment
in context aware devices which are usually computationally lim-
ited, the ASC system should take into account the computational
complexity. This year, DCASE addresses these two concerns by
introducing a subtask seeking a low complexity solution for ASC
with multiple devices (Task 1 sub task A). As a solution to this
sub task, we propose a simple state-of-the-art CNN based approach
which utilizes wavelet based mel scaled representation for acoustic
signals to facilitate learning. We address the issue of generaliza-
tion across multiple devices with data augmentation and ensure low
complexity in terms of model size with post training quantization of
network weights.

The rest of the report is organized as follows. In section 2,
we briefly describe the dataset employed in the task along with the
signal representation technique. Then, we describe in detail the ar-
chitecture of the CNN used along with the activation function and
loss function used in the training process. Next, the implementation
details of data augmentation methods and post training quantiza-
tion are provided. Section 3 presents the results obtained and the
associated analyses. Section 4 concludes the report.

2. METHOD

2.1. Dataset

The development dataset used in this task is TAU Urban Acoustic
Scenes 2020 Mobile [3], development dataset. It contains record-
ings pertaining to 10 different acoustic scenes - airport, bus, metro,
metro station, park, public square, shopping mall, street pedestrian,
street traffic and tram. The development dataset contains recordings
from 10 European cities. Three real devices (A, B, and C) and six
simulated devices (S1 - S6) were used to record data. The devel-
opers have provided a training/test split of 70/30 in which 13965
samples are used for training and 2970 samples are used for testing.

2.2. Signal Representation

The defacto baseline for signal representation in deep ASC mod-
els is the mel spectrogram. The mel spectrogram representation
has a fixed resolution in time and frequency since its computation
is based on Short Time Fourier Transform (STFT). However, weak
and multifaceted signals like acoustic scene signals can be better
characterized by a transformation having non uniform resolution in
time and frequency. Hence, we use a variant of mel spectrogram
which is obtained by merging DWT with mel spectrogram for sig-
nal representation. We performed 4 level decomposition of the au-
dio signals with a biorthogonal wavelet [4] (bior1.3) and computed
the mel spectrogram of the resulting approximation and detail com-
ponents. The mel spectrograms were computed for analysis frames
of 40ms length with 50% overlap at 40 mel bands. The magnitudes
of the mel spectrograms are scaled logarithmically. The final input
to the CNN has the shape 40×250×2. We use librosa [5] to process
the audio signals.
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2.3. Model Architecture

We use a simple CNN for classification. The model architecture is
discussed below.

1. The first layer uses 32 swish activated 3 × 3 kernels with
batch normalization.

2. The second layer has same settings as the first layer. Max
pooling is applied with a pool size of (5,5) for dimensionality
reduction. Dropout is introduced at a rate of 0.2.

3. The third layer has same settings as the second layer with the
exception that it uses 64 kernels and the pool size is (4,100).

4. The fourth layer is a fully connected layer with 100 swish
activated hidden units. Dropout is introduced at a rate of 0.2.

5. The final layer is the output layer with 10 output units and
softmax activation.

The model is implemented in Keras [6]. For training, we use
categorical focal loss as the loss function. The model is trained
in batches of size 64 for 500 epochs with data shuffling between
epochs. To select the best performing model, a validation set is used
and the log loss and accuracy are computed after each epoch. The
model parameters are optimized by Adam optimizer with default
configurations.

2.4. Swish activation function

The choice of activation function has a large impact on the model
performance. Over the last few years, ReLU has been the most
popular activation function due to its simplicity and effectiveness.
Recently, a new activation function has been proposed - swish [7].
This activation can formally be defined as

f(x) = x ∗ (1 + exp(−x))−1 (1)

Like ReLU, swish is bounded below and unbounded above. This
property helps swish to offer strong regularization. Unlike ReLU,
swish is smooth. This helps swish to optimize and generalize neu-
ral network. Additionally, swish is non monotonic which helps to
improve the gradient flow. Hence, we adopt swish as the activation
function for our model.

2.5. Categorical Focal loss

The focal loss [8] generalizes the binary and multi class cross en-
tropy loss and is mathematically defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (2)

where α is the balancing parameter, γ is the focusing parameter
and pt is the prediction score. The higher the value of γ the lower
the loss for well classified examples. Thus it is possible to turn the
attention of the model towards hard-to-classify examples. α is used
to balance the importance of positive/negative examples and it does
not differentiate between easy/hard examples. We used α = 0.25
and γ = 2 in our model.

2.6. Data Augmentation for generalization

In order to make the network extract the most appropriate features
and to enhance the performance towards unseen data, we used data
augmentation. Four elementary augmentation techniques as sug-
gested in [9] are implemented along with MixUp [10] augmenta-
tion. We give the details of the augmentation techniques used in
this work below.

1. Time stretching (TS): speed up or slow down the audio sam-
ple without altering pitch. We implemented time stretching
using librosa.effects with a factor of 0.85.

2. Pitch shifting (PS1, PS2): change the pitch of the audio
recording without altering duration. We implemented pitch
shifting librosa.effects with two factors -2 and -1.5.

3. Additive background noise (BG): We added a background
noise to each audio recording using the equation y = x1 +
w.x2 where x1 is the original audio recording, x2 is the
background noise recording and w is a weighting constant
whose value is randomly chosen from a uniform distribution
between 0.1 and 0.5.

4. Dynamic range compression (DRC): To compress the dy-
namic range of an audio, either the loud sounds are limited
or the quiet sounds are enhanced. In this work, the dynamic
range of audio was compressed to the speech profile by using
SoX (Sound eXchange).

5. MixUp: MixUp was implemented using the equations x̃ =
λxi+(1−λ)xj and ỹ = λyi+(1−λ)yj where xi and xj are
raw input vectors and yi and yj are one hot label encodings.
We used λ = 0.2 in our model.

2.7. Post training quantization

We reduced the model size by quantizing our trained model in Keras
while converting it into TensorFlow Lite format using the Tensor-
Flow Lite Converter. We adopted float16 quantization for the model
weights since it reduces the model size by up to half (since all
weights become half of their original size) while causing minimal
loss in accuracy.

3. RESULTS AND DISCUSSIONS

We implemented DCASE 2021 Task 1A baseline in Keras to fa-
cilitate comparison. For evaluation of the model we used macro-
average multi class cross-entropy (Log loss) and classification ac-
curacy.

3.1. Performance of Baseline

Tables 1 and 2 shows the class-wise and device-wise results of the
baseline on the development dataset. The overall performance of
the baseline system on the development set is 43.7%. It is evident
from the results that the baseline system has no explicit mechanism
for handling the device mismatch. Also, the device-wise system
performance varies according to the amount of training data.
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Scene Label Log loss Accuracy
airport 1.483 45.6

bus 1.522 41.8
metro 1.572 44.8

metro station 1.454 45.8
park 1.527 42.8

public square 1.488 47.5
shopping mall 1.56 41.1

street pedestrian 1.47 47.1
street traffic 1.572 40.7

tram 1.545 39.9
Average 1.519 43.7

Table 1: Classwise performance of baseline

Device Log loss Accuracy
A 1.47 46.7
B 1.595 40.7
C 1.578 42.6
S1 1.501 40.3
S2 1.493 47.3
S3 1.47 43.3
S4 1.51 43
S5 1.584 45.2
S6 1.474 44.2

Table 2: Devicewise performance of baseline

3.2. Performance of Proposed Model

Tables 3 and 4 shows the class-wise and device-wise results of the
proposed model on the development dataset. The overall perfor-
mance of the proposed model on the development set is 85.1%. It is
evident from the results that the proposed model significantly out-
performs the baseline model (confirmed by a one-tailed z-test [11]
p < 0.01). Also, the device-wise system performance is signifi-
cantly enhanced due to data augmentation.

Scene Label Log loss Accuracy
airport 0.619 87.2

bus 0.692 80.8
metro 0.66 86.2

metro station 0.623 85.2
park 0.59 85.9

public square 0.62 85.2
shopping mall 0.6 84.8

street pedestrian 0.591 86.5
street traffic 0.653 84.2

tram 0.63 84.5
Average 0.628 85.1

Table 3: Classwise performance of proposed model

Device Log loss Accuracy
A 0.616 85.5
B 0.618 82.4
C 0.614 88.1
S1 0.623 84.2
S2 0.603 85.2
S3 0.651 86.1
S4 0.608 86.7
S5 0.656 83.9
S6 0.641 83.3

Table 4: Devicewise performance of proposed model

3.3. Model Complexity

To evaluate the proposed system from the computational load per-
spective, Table 5 provides the total number of parameters and com-
plexity in terms of size for each layer of the proposed model. It
is evident from the Table that the proposed model has a total of
42774 parameters of which 42518 are trainable and 256 are non
trainable. The model has a size of 167.1 KB. However, after manag-
ing complexity with post training quantization of network weights
to float16, the model size is reduced to 89.5 KB.

Layer Parameters Size
conv2d 608 2.375 KB

batch norm 128 512 bytes
activation 0 0 bytes
conv2d 1 9248 36.12 KB

batch norm 1 128 512 bytes
activation 1 0 0 bytes

max pooling2d 0 0 bytes
dropout 0 0 bytes

conv2d 2 18496 72.25 KB
batch norm 2 256 1 KB
activation 2 0 0 bytes

max pooling2d 1 0 0 bytes
dropout 1 0 0 bytes

flatten 0 0 bytes
dense 12900 50.39 KB

activation 3 0 0 bytes
dropout 2 0 0 bytes
dense 1 1010 3.945 KB

activation 4 0 0 bytes
Total 42774 167.1 KB

Table 5: Model Summary

4. CONCLUSION

In this technical report, we presented a low complexity cross device
ASC system utilizing wavelet based mel spectrogram representa-
tion.We handled the generalization problem with five simple data
augmentation techniques and managed complexity consraints with
post training quantization of network weights to float16 format. The
proposed system was able to achieve 85.1% classification accuracy
on the development dataset with a log loss of 0.628. The model
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size is 89.5 KB. These results show that the proposed model signif-
icantly outperforms the baseline as confirmed by a one tailed z-test
with p < 0.01.
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