
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

TASK 1B DCASE 2021: AUDIO-VISUAL SCENE CLASSIFICATION WITH
SQUEEZE-EXCITATION CONVOLUTIONAL RECURRENT NEURAL NETWORKS

Technical Report

Javier Naranjo-Alcazar1,2, Sergi Perez-Castanos2, Maximo Cobos2, Francesc J. Ferri2, Pedro Zuccarello1
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ABSTRACT

Automatic scene classification has always been one of the core tasks
in every edition of the DCASE challenge. Until this edition, such
classification was performed using only audio data, and so the prob-
lematic was defined as Acoustic Scene Classification (ASC). In this
2021 edition, audio data is accompanied with visual data, providing
additional information that can be jointly exploited for achieving
higher recognition accuracy. The proposed approach makes use of
two separate networks which are respectively trained in isolation on
audio and visual data, so that each network specializes in a given
modality. After training each network, the fusion of information
from the audio and visual subnetworks is performed at two differ-
ent stages. The early fusion stage combines features resulting from
the last convolutional block of the respective subnetworks at differ-
ent time steps to feed a bidirectional recurrent structure. The late
fusion stage combines the output of the early fusion stage with the
independent predictions provided by the two subnetworks, result-
ing in the final prediction. For the visual subnetwork, a VGG16
architecture pretrained on the Places365 dataset is used, applying a
fine-tuning strategy over the Challenge dataset. On the other hand,
the audio subnetwork is trained from scratch and uses squeeze-
excitation techniques as in previous contributions from this team.
As a result, the final accuracy of the system is 92% on development
split, outperforming the baseline by 15 percentage points.

Index Terms— Deep Learning, Convolutional Neural Net-
work, Acoustic Scene Classification, Gammatone, DCASE2021

1. INTRODUCTION

Automated sound analysis can lead to robust solutions in many ar-
eas/applications, either using audio alone or by combining it with
other sources of information, such as images or other types of sen-
sors. One of these applications is scene classification. This prob-
lematic can be understood as a supervised problem in which a scene
must be classified into one of the predefined classes (e.g. park, air-
port, etc.) Until the 2021 edition, the DCASE challenge had always
proposed Acoustic Scene Classification (ASC) as a core task to be
addressed, i.e. the detection of different scenes, using only audio
recordings [1, 2, 3, 4].

The aim of DCASE 2021 Task 1b is to improve a scene clas-
sifier by using not only audio but also the corresponding video in-
formation. The use of multiple modalities opens new opportunities
that, presumably, may lead to higher recognition accuracies than
the ones obtained from each modality separately [5]. The dataset
provided for the task is known as TAU Urban Audio Visual Scenes

2021 [6]. In turn, this dataset is divided into two splits, the devel-
opment split and the evaluation split. While the development split
contains scenes recorded in 10 cities, the evaluation one contains
scenes from 12 cities (there are two cities unseen in the develop-
ment set). The total number of hours in the development split is
34 hours. One thing to note is that both video and audio data are
provided as clips having a duration of 10 seconds. However, it is
intended that the system will be able to classify clips having only
a duration of one second. Another important aspect is that the use
of external data is allowed in this task. In fact, the submission de-
scribed in this report makes use of the places365 dataset [7].

The approach proposed in this work consists of two components
or modules (an audio module and a visual module) that are fur-
ther trained together to achieve a more robust solution. The visual
model is based on a VGG16 convolutional neural network (CNN)
pre-trained with the places365 dataset. The training procedure of
this component is based on a transfer learning strategy with fine tun-
ing that makes use of the dataset provided in the Challenge. On the
other hand, the audio ASC system is very similar to those presented
by the team in previous years. First, a 3-channel audio input is ob-
tained using a Gammatone filter bank representation with 64 bands.
Finally, a CNN incorporating squeeze-excitation (SE) techniques is
trained from scratch. The hyperparameters used in this module are
very similar to the ones used in previous submissions. Finally, the
audio and video modules with frozen weights are combined into
a multimodal recurrent structure that performs information fusion
both at early and late stages. It should be noted that both the inde-
pendent components and the final system outperform the baseline.
More information on these two modules and their combination is
given in Section 2, while the results obtained in the development
stage are presented in Section 3.

2. METHOD

2.1. Audio Module

2.1.1. Audio Input Representation

Following the idea of last year submissions [8, 9] a multi-channel
3D audio representation is selected. The chosen option has been the
one previously known in our works as LRD (left-right-difference)
[8, 9]. In this submission, a Gammatone filter bank-based repre-
sentation has been chosen for providing a slightly superior perfor-
mance than other alternatives (e.g. Mel-scale filter banks) in pre-
liminary tests. Note that Gammatone filter banks have also been
widely adopted in other machine listening applications as well as in
other participations of this team [10, 11, 12, 13].
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Figure 1: Proposed network achitecture for audiovisual scene classification.

All representations are calculated with a window size of 40 ms
with 50% overlapping, using a sampling rate of 44.1 kHz. Accord-
ing to past editions and state-of-the-art research, spectral resolution
can be a decisive factor [14]. In our case, it has been decided to use
64 bands. Gammatone representations were computed by using the
Auditory Toolbox presented in [15] with Python implementation.
Taking the above details into account, one second of audio results
in a tensor input of size (64, 50, 3).

2.1.2. Audio Subnetwork

The convolutional network trained with the audio information (see
Figure 1) is composed of blocks known as Conv-StandardPOST.
These blocks were proposed in [16]. The aim of these blocks
is to achieve improved accuracy by recalibrating the internal fea-
ture maps using residual [17] and squeeze-excitation techniques
[18, 19]. For more insight about this choice, please see [16] where
Conv-StandardPOST is fully explained and compared to other com-
peting blocks. After each Max Pooling layer, a Dropout [20] layer
with 0.3 rate is also implemented in order to avoid overfitting. The
output feature maps from the convolutional blocks are summarized
by global average pooling and fed to a fully-connected layer with
softmax activation for classification. This subnetwork is trained
from scratch on the whole dataset using only audio data.

2.2. Visual Module

2.2.1. Visual Input Representation

The visual input is adapted to match the pre-trained VGG16 archi-
tecture, which accepts color images of size 224×224 pixels. More-
over, as visual scene recognition does not require a very high frame
rate (images do not change that much from frame to frame), the
videos from the dataset are subsampled for obtaining a frame rate
of 5 frames per second (fps). Therefore, a one-second video clip
results in a tensor shape of (5, 224, 224, 3).

2.2.2. Visual Subnetwork

The visual module is based on the VGG16 CNN architecture [21]
pretrained on the places365 dataset [7]. With the aim of process-

ing temporal information extracted from multiple frames, a time-
distributed structure with frozen weights is considered. The out-
puts from each time step (5 temporal steps) are globally averaged
channel-wise, resulting in a sequence of 512 output features. This
sequence is fed to a bidirectional GRU layer and the returned se-
quences are processed by a time-distributed fully-connected layer
with softmax activation, resulting in a predicted label for each time
step. The final label is taken as the temporal average of the pre-
dictions. This subnetwork is trained on the visual data only, with
trainable weights only on the recurrent and final dense layer.

2.3. Full Audio-Visual Network

The complete audio and visual modules described above are then
merged into a full audio-visual framework that combines informa-
tion from both modalities at two different levels. On an early fusion
stage, the output of the last convolutional block of the audio and
visual modules are concatenated into a sequence of 640 features.
To achieve this, the feature maps of the audio module are turned
into a temporal sequence matching the temporal resolution of the
visual data (i.e. 5 fps) using global and average pooling operators.
A bidirectional GRU processes the sequence, and a new prediction
is created by stacking a global average pooling and a dense layer.
A late fusion stage receives the predictions from the independent
modalities as well as the one resulting from their combination and
produces the final prediction with a dense layer with softmax acti-
vation.

2.4. Experimental details

2.4.1. Training

The whole network is trained in three steps. The first step corre-
sponds to the training of the audio module from scratch using audio
data. The second step trains the recurrent and classification parts of
the visual module (the convolutional blocks use frozen weights from
the pre-trained network). In the last step, the whole audio-visual
network is trained using frozen weights from the audio and visual
modules. A fine-tuning strategy is finally followed, unfreezing all
the weights and using a very small learning rate. The loss function
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used at each training step was categorical cross-entropy. The op-
timizer used was Adam [22] with default parameters. The models
were trained with a maximum of 200 epochs. Batch size was set
to 32 for training the independent subnetworks and 16 for the com-
plete audio-visual network due to memory constraints. The learning
rate started with a maximum value of 0.001 decreasing with a fac-
tor of 0.5 in case of no improvement in validation accuracy after
20 epochs. In the last fine-tuning with all trainable weights, the
starting learning rate was 10−5. The training is considered as early
finished in case of no improvement in validation accuracy after 50
epochs. Due to the competition context, mixup [23] with α = 0.4
has been implemented. Keras with Tensorflow backend was used to
implement the models of this submission.

3. RESULTS

The results obtained by the scene classification system, using each
module separately and together, are shown below. As observed in
Table 1, the baseline is exceeded in all 3 cases. The audio network
improves the baseline by 4 percentage points while the visual net-
work improves the baseline by about 22 points. As can be noticed
(and this being the aim of this Challenge) merging both sources of
information leads to a more accurate system. The best performing
module (visual) improves by almost 4 points when combined with
auditory information, leading to a final accuracy of 90.0%.

Audio Visual Audio-Visual

Challenge Baseline 65.1 64.9 77.0

Proposed system 69.0 86.5 90.0

Table 1: Accuracy (%) results obtained compare with the proposed
baseline

4. CONCLUSION

Nowadays, there are a multitude of machine learning solutions
adapted to data from different domains (image, speech, audio, ...).
However, mixed solutions exploiting jointly data from multiple do-
mains are not as well explored. Task 1b of the 2021 edition of the
DCASE Challenge proposes a modification of the classic ASC task
to turn it into an audio-visual task where, apart from the audio of
the scene, the video is also available. Following the line of research
of this team during the two previous editions, an ASC system us-
ing squeeze-excitation techniques using Gammatone audio spectro-
grams and merged with a well-known architecture for computer vi-
sion (VGG16), has been proposed. The temporal structure of the
data is handled by a recurrent architecture, performing data fusion
from both modules both at an early and late stages. The results
show that merging both sources of information makes the system
more accurate, achieving a 15 percentage point accuracy improve-
ment with respect to the Challenge baseline.
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