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ABSTRACT

This report presents a summary of our submission to the 2021
DCASE challenge Task 6: Automated Audio Captioning. Our ap-
proach to this task is derived from state-of-the-art ASR techniques
available in the ESPNet toolkit. Specifically, we train a convolution-
augmented Transformer (Conformer) model to generate captions
from input acoustic features in an end-to-end manner. In addition
to the prescribed challenge dataset: Clotho-v2, we also augment
the AudioCaps external dataset. To overcome the limited availabil-
ity of training data, we further incorporate the Audioset-tags and
audio-embeddings obtained by pretrained audio neural networks
(PANNs) as an auxiliary input to our model. An ensemble of mod-
els trained over various architectures and input embeddings is se-
lected as our final submission system. Experimental results indi-
cate that our models achieve a SPIDEr score of 0.224 and 0.246
on the development-validation and development-evaluation sets re-
spectively.

Index Terms— Automated Audio Captioning, Conformer, ES-
PNet, PANNs

1. INTRODUCTION

This paper describes the solution for DCASE 2021 Task 6: au-
tomated audio captioning task. The proposed method is based
on state-of-the-art automatic speech recognition (ASR) techniques
such as convolution-augmented Transformer (Conformer) architec-
ture [1] and the fusion of a language model, which are incorporated
with the end-to-end speech processing toolkit ESPnet [2]. Further-
more, we utilize the pretrained audio tagging model PANNs [3] to
extract auxiliary information (e.g., Audioset [4] tags and embed-
ding vector) and integrate them with the ASR model, enabling us
to generate consistent captioning results. The contributions of this
paper are summarized as follows:

• We apply an attention-based encoder-decoder with the Con-
former architecture, which allows capturing both local and
global contexts in the input sequence. We also employ the lan-
guage model trained on the captions and integrate its score with
shallow fusion, resulting in a more stable prediction [5].

• To further improve the performance, we introduce the pre-
trained audio tagging model PANNs to extract the auxiliary

information, including Audioset tags and embedding vectors,
and then utilize them as the additional inputs for the encoder-
decoder model. The use of additional inputs leads to the gen-
eration of captions that have more variability.

• Experimental evaluation with DCASE 2021 Task 6 dataset [6]
shows that the proposed encoder-decoder significantly outper-
forms the baseline and the use of additional information de-
rived from the audio tagging model improves the performance.
Our best model shows SPIDEr score of 0.224 and 0.246 on
the development-validation and development-evaluation sets,
respectively.

• Towards supporting accessible and reproducible research, we
intend to release our audio captioning system and pre-trained
models to the ESPNet toolkit1 upon challenge completion.

2. PROPOSED METHODOLOGY

2.1. Overview

Fig. 1 illustrates an overview of the proposed method. Similar to
other speech-related tasks, we use log-mel filterbank features as the
primary input. In addition to the primary input, we employ auxil-
iary inputs such as Audioset tags and an embedding vector, which
are extracted with the pretrained audio tagging model PANNs [3].
Both inputs are fed into the attention-based encoder-decoder model.
Inspired by the success of Conformer-based models for tasks like
speech recognition, translation, and separation [7], our model uses a
Conformer encoder for processing these audio features and a Trans-
former decoder to process words in a corresponding caption. To
further improve the performance, we introduce the RNN-based lan-
guage model and combine it with the encoder-decoder model in the
decoding stage. The following sections explain the details of each
component and processing.

2.2. Conformer Encoder

The encoder incorporates a convolution sub-sampling layer and sev-
eral Conformer blocks, where each block consists of a first feed-
forward module, a multi-head self-attention module, a convolution
module and a second feed-forward module in the aforementioned

1https://github.com/espnet/espnet
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Figure 1: An overview of the proposed method based on a Conformer encoder and a Transformer decoder. SpecAug based data augmentation
is performed on the log-mel filterbank features. The pre-trained wavegram-logmel-CNN14 PANNs model extracts the 527-tags vector and
2,048-embedding vector, and are fed as auxiliary inputs. Finally, a shallow fusion of decoder output and RNN-LM is performed to generate
the output caption.

sequence. Similar to Transformer ASR models, a residual connec-
tion is added to the output of the feed-forward module followed by
a layer normalization [8]. To regularize the network, the module
further employs dropout and Swish activation [9].

Next, the self-attention module uses relative positional encod-
ing in order to make the encoder robust to varying input length.
This feature makes Conformer an ideal encoder for audio samples
of varying length as seen in the present task. This module also em-
ploys dropout and a residual connection to regularize the network.
Finally the convolution module employs a point-wise convolution,
a gated linear unit (GLU) activation [10], 1-dim depth-wise convo-
lution layer, a batch normalization layer [11], Swish activation and
a point-wise convolution. A residual connection and dropout are
again used for regularization.

2.3. Transformer Decoder

The decoder also incorporates several Transformer blocks, where
each block consists of a multi-head self-attention layer, and a linear
layer with ReLU activation sandwiched between two layer normal-
ization layers.

2.4. Data Augmentation

We perform input data augmentation using SpecAug [12] consisting
of three kinds of deformations - time warping, frequency masking
and time masking. We set the maximum time warp parameter to
W = 5, and randomly choose w ∈ [0,W ] such that the log-mel
filterbank feature matrix is warped by w. Frequency and time mask-
ing are based on Cutout [13] regularization technique which masks
a randomly chosen rectangular portion of the log-mel filterbank ma-
trix. Dimensions of the mask were chosen randomly based on the
maximum frequency and time masking parameters of Fm = 30 and
Tm = 40 respectively.

2.5. Tags & Embeddings

To improve the generalization ability of our model, we provide an
auxiliary input to our encoder framework, similar to the use of ro-

bust audio embeddings in speaker recognition tasks [14]. For this
purpose, we use CNN14 - one the PANNs models trained on the
large scale Audioset dataset of over 5,000 hours of audio samples
labeled with 527 audio tags. The CNN14 model is a wavegram-
logmel-CNN system trained on 32kHz audio samples using 14 con-
volution layers. The model outputs a 527-tags vector, whose each
element corresponds to the prediction of an audio tag. In addition
to this 527-tags vector, we also extract a 2,048-embedding vector
from each audio sample that is inputted to final classification layer.

The tags and/or embeddings obtained using PANNs are used as
an auxiliary input to our model. When using both the tags and em-
beddings, the two feature vectors are simply concatenated to form
a single column vector. These features are first L2 normalized and
then passed through a feed-forward layer to be projected to the same
size as that of the attention dimension. The projected features are
finally added to the output of the Conformer encoder, before being
sent as an input to the Transformer decoder.

2.6. Ensemble Decoding and Shallow Fusion with LM

For better predictive performance, we implement an ensemble de-
coding module which performs posterior averaging of the attention
score output from the several model decoders. We also separately
train an word-token RNN language model (RNN-LM) using the
captions in the training data. During inference, we integrate the
decoder and separately trained RNN-LM with shallow fusion [5].

3. EXPERIMENTS

3.1. Data Preparation

Our proposed model takes 16 kHz audio samples as input and com-
putes 80 log-mel energies from each 64 ms frame, shifted every 32
ms. Accordingly, all the audio files in Clotho-v2 dataset were down-
sampled from 44.1 kHz to 16 kHz. The overall development split of
the Clotho-v2 dataset has 3,839 training samples, 1,045 validation
samples and 1,045 evaluation samples. Each audio sample is 15-30
seconds long and contains 5 human generated captions with 8-20
words each.
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Since the challenge dataset is relatively small to train large
neural networks, we additionally augment the training data with
roughly 46,000 single caption audio samples from the AudioCaps
dataset [15]. Audio samples in this dataset are carefully chosen
from the 2M samples in Audioset dataset [4]. Each audio sample is
roughly 10 seconds long.

3.2. Model Variations

The baseline Conformer model used in our experiments has 16 en-
coder layers and 4 decoder layers, each with 1,024 units along with
256-dim attention layers with 4 heads and a depth-wise convolu-
tion with kernel size of 15. A variation of the baseline Conformer
model was trained with smaller encoder-decoder layers having 512
units each. Another variation was trained with a smaller attention
framework having 128-dim layers with 2 heads. Final model varia-
tion was trained with above mentioned smaller attention framework,
but with a larger kernel size of 31.

3.3. Additional Input Features

In addition to the log-mel energies, we extract a softmax vector of
527-tags and a 2,048-embedding vector from each audio sample
using the CNN14 PANNs model [3]. Each element in the 527-tags
vector represents the probability of a corresponding class-label in
the Audioset ontology. Another variation of the baseline Conformer
model was trained with these extracted 2,048-embeddings and/or
527-tags as additional inputs to the encoder-decoder model.

3.4. Hyper-Parameters

During training, 64 audio-caption pairs were batched together and
trained for 50 epochs with a learning-rate of 0.5, dropout of 0.1,
cross-entropy loss function and noam optimizer [16]. To prevent ex-
ploding gradients, we set the gradient threshold to 5. Label smooth-
ing [17] was set to 0.1 to avoid high confidence training predictions.

Upon completion of training, we average the model parame-
ters over the final-10 epochs and this averaged model was used for
inference. During inference, beam search was performed with a
beam-size of 10 and RNN-based language model weight of 0.2. We
note that the above hyper-parameters are optimized based on our
prior experience in tuning ASR systems.

3.5. Results

The performance of our trained models were evaluated on both the
development-validation and development-evaluation splits and are
summarized in Table 1 and Table 2. We observe a slight degrada-
tion in performance when varying our model’s architecture as com-
pared to the baseline Conformer. However these variations help to
improve the performance of a model ensemble. Secondary input
features of tags and embeddings were able to improve the perfor-
mance, especially over the development-validation split.

We also observe that augmenting the training data with the
development-evaluation split was indeed able to improve the base-
line Conformer’s performance over the development-validation
split and vice-versa. Finally, model ensembling was performed over
various combinations of our trained models and the best performing
ensembles were chosen for our final submission.

4. CONCLUSION

The present technical report details our submission to the DCASE
2021 Challenge Task 6: automated audio captioning. The proposed
methodology employs existing state-of-the-art ASR techniques in-
cluding Conformer-encoder, Transformer-decoder, data augmenta-
tion, embeddings as auxiliary inputs and shallow fusion with a pre-
trained RNN language model. Our experiments qualify the ability
of these techniques for effective captioning of audio samples.
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Table 1: Scores of evaluation metrics for the development-validation split.

Method BLEU-1,2,3,4 ROUGE-L METEOR CIDEr SPICE SPIDEr
Conformer 0.534 0.343 0.233 0.158 0.354 0.157 0.351 0.106 0.228

smaller enc-dec 0.524 0.331 0.219 0.144 0.356 0.153 0.329 0.103 0.216
smaller attention 0.506 0.320 0.212 0.140 0.349 0.152 0.337 0.102 0.219

+ larger-kernel 0.518 0.330 0.224 0.150 0.355 0.154 0.340 0.105 0.223
+ 2048-embeddings 0.533 0.338 0.222 0.145 0.353 0.157 0.346 0.104 0.225
+ 527-tags 0.534 0.339 0.223 0.144 0.355 0.159 0.342 0.106 0.224
++ 2048-embeddings 0.536 0.341 0.225 0.146 0.357 0.160 0.346 0.108 0.227
+ dev-val split 0.541 0.346 0.231 0.152 0.356 0.161 0.362 0.110 0.236

Best Ensemble 0.546 0.356 0.243 0.165 0.369 0.163 0.381 0.110 0.246

Table 2: Scores of evaluation metrics for the development-evaluation split.
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