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ABSTRACT

In this report, we describe our solution for audio-visual scene clas-
sification task of DCASE2021 challenge Task1B. Our solution is
based on a multi-modal fusion approach consisting of three different
domain features: (1) Log-mel spectrogram audio features extracted
by CNN variants from audio files. (2) Frame-wise image features
extracted by CNN variants from video files. (3) Text-guided frame-
wise image features extracted by CLIP variants from video files.
We trained three domain models respectively and created final sub-
missions by ensembling the class-wise confidences of three domain
models’ outputs. With ensembling and post-processing for the con-
fidences, our model reached 0.149 log-loss (official baseline: 0.658
log-loss) and 96.1% accuracy (official baseline: 77.0% accuracy)
on the officially provided fold1 evaluation dataset of Task1B.

Index Terms— Audio-visual Scene Classification, Multi-
modal, CLIP, Convolutional Neural Network, Vision Transformer,
Log-mel Spectrogram, Focal Loss, SpecAugment, Random Erasing

1. INTRODUCTION

Audio-visual scene classification is one of the classification prob-
lems which uses both audio and video modalities for classifying the
defined scene. Like human perception, we can expect to create a
better model by exploiting complementary information from differ-
ent modalities. This year, Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge 2021 [1] holds the audio-
visual scene classification task as Task1B [2] with a large-scale
dataset called TAU Audio-Visual Urban Scenes 2021. This dataset
provided by the organizer contains synchronized audio and video
recordings from 12 European cities in 10 different scenes [3].

This report describes the details of our team’s (team name: LD-
SLVision) solution for Task1B of DCASE2021. For this task, we
developed various audio classification models and video classifica-
tion models, and created final submissions by fusing those models
using an ensemble method and a post-processing technique.

The features of our system can be concluded as three folds:
1) Instead of learning raw audio waves directly, we only used

log-mel spectrogram features extracted from audio files as inputs,
and leveraged those features with strong CNN variants which are
used vigorously in the recent computer vision community.

2) We developed CLIP Late Fusion Network, which uses ex-
tracted features from various CLIP image encoders [4] as inputs for
a multi-branch network. As far as we know, this is the first approach
which uses CLIP models for audio-visual scene classification task.

3) We applied a post-processing technique to suppress the value
of log-loss, which is defined as the competition’s metric.

2. PROPOSED SOLUTION

In this section, we describe the details of our solution for
DCASE2021 challenge Task1B. For tackling the audio-visual scene
classification task, we created various audio classification models
and video classification models respectively in each domain. After
created various models, we integrated these models with ensem-
ble methods and applied post-processing techniques to suppress the
log-loss value for final submissions. The overview of our multi-
modal fusion approach is shown in Fig. 1.

2.1. Audio Classification Models by Log-mel CNN Variants

For utilizing the audio modality of the provided dataset, we created
various audio classification models with 1 sec. split audio files. The
test dataset is provided as 1 sec. audio files, so we didn’t use original
10 sec. audio files and divided each 10 sec. audio files into ten 1
sec. audio files.

As inputs for audio classification models, we extracted log-mel
spectrograms with delta/delta-delta features, which are also used
in DCASE2020 Task1A winner’s solution [5]. We used librosa li-
brary [6] for creating log-mel spectrograms. The parameters of log-
mel spectrogram transformation are as follows: sampling rate (sr)
is 48kHz, the number of mel bins (n mels) is 256, the length of
FFT window (n fft) is 4096, and the number of samples between
successive frames (hop length) is 512.

About the choice of inputs type (e.g. log-mel spectrogram, raw
audio waveform, etc.), we referred to the PANNs paper [7] which
proposing a widely used audio classification model. In the exper-
iments of PANNs paper, the recognition performance of log-mel
spectrogram classification with ResNet-38 [8] is competitive with
that of wavegram log-mel CNN which is proposed as state-of-the-
art architecture in the paper. Therefore, we only selected log-mel
spectrogram features as inputs, and uses these features with strong
CNN backbones (EfficientNet [9] with Noisy Student [10], ResNeSt
[11], RegNet [12]) which are better than ResNet-38 in the recent
computer vision community.

2.2. Video Classification Models by CNN Variants

For creating video classification models, we first extracted 12 image
frames from 10 sec. video file with equal interval. After extracted
all image frames, we created standard image classification models
with strong CNN variants. We selected three backbones (ResNeSt
[11], RegNet [12], HRNet [13]) which achieved 1st place recogni-
tion performance in multi-label multi-class disaster scene classifi-
cation task [14].
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Figure 1: The overview of our approach for DCASE2021 challenge Task1B. This picture shows the case of S02 in Table 3.

2.3. Video Classification Models by CLIP Late Fusion Network

For leveraging text modality, we used CLIP image encoders which
are trained with various web image and text caption pairs using
contrastive learning method [4] [15]. With CLIP image/text en-
coders, we first conducted a zero-shot prediction on the provided
TAU dataset. As a result, even without training, CLIP models
achieved strong recognition performances which are competitive
with our trained audio classification models as shown in Table 2.

For boosting the CLIP-based approach, we fine-tuned CLIP
models by adding a learnable multi-branch network, which we call
CLIP Late Fusion Network. The architecture of CLIP Late Fusion
Network is shown in Table 1. For this multi-branch network, we ex-
tracted image features from three types CLIP image encoders and
feed these features as inputs to the network. In the SI-Score paper
[16] which compares various CNN/ViT/CLIP models, the authors
show that each CNN/ViT/CLIP models have different characteris-
tics. Therefore, we selected to use not a single image encoder but
multiple image encoders (i.e. ResNet50x4, ResNet101, Vit-B/32)
for creating more diversity in input features.

Table 1: The architecture of CLIP Late Fusion Network.

RN50x4 (dim:640) RN101 (dim:512) ViT-B/32 (dim:512)
Linear(640, 512) Linear(512, 512) Linear(512, 512)

BatchNorm1d(512) BatchNorm1d(512) BatchNorm1d(512)
ReLU() ReLU() ReLU()

Dropout(p=0.2) Dropout(p=0.2) Dropout(p=0.2)
Linear(512, 256) Linear(512, 256) Linear(512, 256)

concatenation of 256*3 dimension
Linear(256*3, 128)

Linear(128, 10)

2.4. Ensemble and Post-Processing

After created audio and video classification models, we used these
models to output the confidences for each defined 10 scene class.

For the evaluation of the fold1 validation dataset, we first inferred
confidences for each 10 split audio files and 12 image frame files
from each 10 sec. synchronized files. For each 10 sec. file, we
equally ensembled the output confidences of each split audio file
and image frame file. In the ensemble process, audio classifica-
tion models are generally worse than video classification models
(see Table 2.), so we used the good accuracy’s class score (e.g.
In fold1 evaluation, the recognition performance of A04 for tram
class is competitive with that of C04/V04.) Therefore, we used
only bus/park/tram classes’ confidence scores and discard the other
classes in ensemble. In addition, for each sample, we replaced the
confidences of video models with those of audio models when the
maximum confidence of 10 classes from video models is 0.20 lower
than that of audio models. This method improves the recognition
performance on night scenes, to which video models have low con-
fidences due to visual difficulty, but audio models can correctly clas-
sify the class.

About post-processing, we applied the below equation (1) for
replacing each models’ output confidences. The idea behind this
equation is as follows: For example, in the log-loss metric, when
a sample belongs to class ”tram” and the output confidence of the
sample for class ”tram” is too small value (e.g. 0.00001), the log-
loss value for this sample becomes large (i.e. -log(0.00001) = 11.51)
and it will have a large negative impact on the calculation of whole
log-loss value even with a few misrecognition. Therefore, to mit-
igate the whole log-loss error, we introduced this confidence re-
placement approach. With a similar idea, we applied other three
replacements described in equation (1). This approach is heuristic,
but it significantly improved the log-loss results on the evaluation
dataset provided as fold1 evaluate.csv (Table 2).

x =


0.001, when 0 < x ≤ 0.001

0.001, when 0.001 < x ≤ 0.06

0.06, when 0.06 < x ≤ 0.20

0.99, when 0.70 < x ≤ 1.0

(1)
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Table 2: Summary of our created models. In the baseline system, the Audio-only model is trained with 10 sec. audio files, but we trained our
audio classification models with 1 sec. audio files as test audio files are provided as 1 sec. audio files. When we train our audio classification
models with 10 sec. audio files, the recognition performances are more boosted than that of 1 sec. models. About CLIP models indexed as
C01-C03, we provided original labels as sentences to the CLIP text encoders and evaluated the models with the CLIP image features.

Index Architecture Audio Video Notes Logloss Accuracy
B01 OpenL3’s model log-mel CNN - Baseline model of Audio-only 1.048 65.1
A01 RegNet-6.4F log-mel CNN - Training with 1 sec. audio files 0.711 76.6
A02 ResNeSt-50d log-mel CNN - Training with 1 sec. audio files 0.732 76.9
A03 TF-Efficientnet-B1-NS log-mel CNN - Training with 1 sec. audio files 0.821 77.2
A04 A01-A03’s models log-mel CNN - Ensemble of A01-A03 0.721 78.1
B02 OpenL3’s model - CNN Baseline model of Visual-only 1.648 64.9
V01 RegNet-6.4F - CNN - 0.328 90.0
V02 ResNeSt-50d - CNN - 0.367 91.7
V03 HRNet-W18 - CNN - 0.336 90.9
V04 V01-V03’s models - CNN Ensemble of V01-V03 0.316 92.4
C01 ResNet-101 - CLIP CNN No Training 0.671 76.7
C02 ResNet-50x4 - CLIP CNN No Training 0.668 74.5
C03 ViT-B/32 - CLIP ViT No Training 0.725 72.5
C04 C01-C03’s models - CLIP CNN&ViT Late Fusion of C01-C03 0.273 90.9
B03 OpenL3’s model log-mel CNN CNN Baseline model of Audio-Visual 0.658 77.0
E01 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT Ensemble of A04/V04/C04 0.238 95.8
E02 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT E01 with Post-Processing 0.149 96.1

Table 3: Summary of our final submissions. p.p. in the description
means post-processing which method is explained in 2.4 section.

Index Description Subsystem
S01 video models with 1fold 4
S02 audio/video models with 1fold + p.p. 7
S03 audio/video models with 5folds 35
S04 audio/video models with 5folds + p.p. 35

3. EXPERIMENTS

In this section, we present our experimental setting and results for
both audio and video classification models.

Experimental setting for 2.1: We created audio classification
models by log-mel CNN variants under the following setting: (1)
Data augmentation: Resized to 256 × 100 × 3, Random Gain, Fre-
quency Masking [17]. We didn’t use Mixup [18] and Time Warp-
ing/Masking [17] for our final submissions, as these augmentations
didn’t work in our experimental setting. (2) Train batch size: 24 (3)
Epoch: 20 (Best models’ epoch are around 3-5 epoch.)

Experimental setting for 2.2: We created video classification
models by CNN variants under the following setting: (1) Data aug-
mentation: Resized to 448 × 448 × 3, RandomAffine, ColorJitter,
GaussianBlur, Random Erasing [19]. In RandomAffine augmenta-
tion, we set degrees as [-10, 10], translate as (0.1, 0.1), and scale as
(0.5, 1.5). In GaussianBlur augmentation, we set the kernel size as
(11, 11). Other augmentations’ parameters are the default ones of
PyTorch [20]. (2) Train batch size: 20 (3) Epoch: 20 (Best models’
epoch are around 15-20 epoch.)

Experimental setting for 2.3: We created video classification
models by CLIP Late Fusion Network under the following setting:
(1) Data augmentation: We used extracted features from CLIP im-
age encoders and applied no data augmentation to these features in
the late fusion network. (2) Train batch size: 48 (3) Epoch: 20 (Best

models’ epoch are around 3-5 epoch.)
In the above experiments, we used SGD+Momentum as the op-

timizer. The learning rate is divided by 10 when the training model
reached 5 epoch, 10 epoch and 15 epoch. Other hyper-parameters
are the same as used in IBN-Net [21] GitHub repository*1. We
trained these models with Focal Loss [22] which γ parameter is 2.0.
About pre-trained models, we used ImageNet pre-trained models
from timm GitHub repository*2 and CLIP pre-trained models from
official CLIP GitHub repository*3. For ensemble as noted in Ta-
ble 3, we used best epoch models in the validation accuracy of each
model. Instead of using Test-Time Augmentation, we extracted five
images from each test video, and ensembled the confidences of the
five images equally for each test video. In addition, all our models
are trained and tested on 1 GPU (GeForce RTX 2080Ti).

Results: Table 2 shows the results for all of our models on the
evaluation dataset provided as fold1 evaluate.csv. In this task, we
found that CLIP models (C01-03) are competitive with the baseline
models (B01-03) with no training. In addition, our video classifi-
cation models are much stronger than our audio classification mod-
els and we can classify 10-class scenes well only with our video
classification models. In Table 3, we present the descriptions of
our final submissions. The details are as follows: S01 consists of
V04 and C04. Though C04 uses extracted features from C01-03,
C04 model is constructed from one multi-branch network, so we
counted C04’s subsystem as 1. S02 is the same as E02. S01-02
are trained and tested with fold1 train.csv and fold1 evaluate.csv
respectively. S03 consists of five E01 models. S04 consists of five
E02 models. We created five label list files like fold1 train.csv and
fold1 evaluate.csv, and used those label list files for creating S03-04
submissions. In the process of creating those five label list files, we
splitted the whole dataset into train and validation with keeping no
overlapping about the location id.

*1: https://github.com/XingangPan/IBN-Net
*2: https://github.com/rwightman/pytorch-image-models
*3: https://github.com/openai/CLIP
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4. CONCLUSION

In this technical report, we described our approach for tackling the
Task1B of the DCASE2021 challenge. We showed that by utilizing
the features of CLIP variants with each audio classification mod-
els and video classification models, we can improve the recognition
performance of the audio-visual scene classification task. In addi-
tion, we applied the post-processing method to the ensembled con-
fidences, and our model achieved 0.149 log-loss (official baseline:
0.658 log-loss) and 96.1% accuracy (official baseline: 77.0% accu-
racy) on the officially provided fold1 evaluation dataset of Task1B.
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