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gilles.gasso@insa-rouen.fr

ABSTRACT

In this technical report, we propose a sound event detection sys-
tem for the DCASE 2021 task 4 challenge, which consists of a
foreground-background classification branch that is jointly trained
with the baseline architecture. Furthermore, to account for the mis-
match between synthetic annotated data and real unlabeled data
used for training, we also propose a frame-level domain adaptation
scheme to improve detection performance over real soundscapes.
We show that these improvements to the baseline method help in
the generalization of the sound event detection task.

Index Terms— Sound Event Detection, Domain Adaptation,
foreground-background classification

1. INTRODUCTION

Task 4 of the DCASE 2021 challenge [1] offers the opportunity to
design systems for the analysis of ambient sound scenes of domestic
environments. To this end, synthetic and real-world recordings are
provided to come up with solutions that overcome commonly found
problems in sound event detection (SED). In this task, although it
is customary to generate synthetic soundscapes that try to match as
much as possible the acoustic conditions found in real-life record-
ings, there still exists a shift between the simulated (source domain)
and the actual generating process of real environments (target do-
main). This difference in domain distributions motivates the use of
adaptation strategies to reduce data mismatch. Thus, we particu-
larly tackle the feature distribution shift between synthetic and real
data used to train data-driven SED systems. To account for any
differences between synthetic and real soundscapes, we propose a
domain adaptation strategy based on the DeepJDOT method [2] re-
lying on optimal transport that aims to improve performance on real
test data. Also to help the SED system to learn relevant sound repre-
sentations, we investigate adding foreground-background detection
as an auxiliary classification task. Altogether domain adaptation
and the auxiliary task lead to enhanced SED performances.

2. MODEL ARCHITECTURE

The selected model architecture is the same as the baseline system.
It consists of a mean-teacher model in which both the student and
the teacher model have the same network architecture. Our pro-
posed domain adaptation strategy chooses only the student model
to undergo adaptation.

The network architecture is the same as the baseline system
to perform sound event detection. It comprises a convolutional-
recurrent neural network (CRNN). The CNN part is composed of
7 layers, each layer having [16, 32, 64, 128, 28, 128, 128] filters,
respectively. A kernel of size 3x3 was used and the max-pooling
for each layer are [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]],
respectively. A gated linear unit activation is applied to the convo-
lution operations.

The RNN part is composed of 2 layers of 128 bidirectional
gated recurrent units. The output of the CRNN is followed by a
dense layer with sigmoid activation function to produce frame-level
(strong) predictions. Clip-level (weak) predictions are obtained by
multiplying the aforementioned linear layer with a dense layer with
softmax activation function.

The foreground-background classification branch consists of a
dense layer with sigmoid activations, which acts upon the outputs
of the RNN block.

In the training stage, the model is trained with Adam optimizer,
and a dropout value of 0.5, with a gradually increasing learning rate
with max value of 1e − 3 as in [3]. During the adaptation stage,
learning rate is fixed to 1e− 4.

3. DATASET

We used the DCASE 2020 available data to trained our systems.
The dataset is composed of 2,045 synthetic audio clips generated
by Scaper [4], 1,578 real soundscapes with clip-level annotations
and 14,412 unlabeled real recordings. All this available data for
training was used to trained our proposed system with foreground-
background classifier, while only the synthetic and weakly labeled
datasets were used in our proposed domain adaptation strategy. We
did not rely on the new synthetic dataset for this 2021’s challenge.

4. MODEL TRAINING

For the sound event detection task we have access to a synthetic
dataset with strong labelsDS = {xsi , ysi }n

s

i=1, and two datasets with
real recordings: one with weakly labels DW = {xwi , ywi }n

w

i=1, and
the other without labels of any sort DU = {xui , yui }n

u

i=1.
We use CRNN from student model as embedding function g :

x → z, where the log-mel representations are mapped to a latent
space Z . The sound event detection (SED) branch is represented
by the function f : z → y, that maps the latent space to the sound
events class label space, and the proposed foreground-background
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Figure 1: Proposed model with added foreground-background auxiliary classifier to the baseline model with color coded data flow for
synthetic and real soundscapes. For simplicity, the diagram depicts only the student model and the associated classification costs for training.

(FB) auxiliary classifier fFB : z→ yfb maps the latent space to the
foreground-background label space. Analogously, for the teacher
model we denote by g′, f ′ and f ′

FB the CRNN embedding function,
SED branch and FB auxiliary classifier, respectively. Figure 1 show
a general depiction of the proposed system.

Motivated by the fact that discriminating the spectro-temporal
characteristics of domestic sounds in foreground (e.g., speech, cat,
dog) and background (e.g., vacuum cleaner, blender, electric razor)
is possible in source separation [5], we incorporate a classifier that
aims to categorize the domestic sound events in these two broad
categories. We hypothesize that learning it jointly with the baseline
system will help the network improve generalization on the sound
event detection task.

Thus, to train the FB classifier in a supervised way, we gener-
ated foreground-background ground-truth annotations yfbs from the
strong labels of synthetic data ys by combining the sound event la-
bels in two categories:

• Foreground: alarm - bell ringing, speech, cat, dog and dishes
• Background: blender, vacuum cleaner, frying, electric shaver -

toothbrush and running water

The mean-teacher model is optimized by the combination of
three classification-consistency cost pairs:

L =L(ysi , f(g(x
s
i ))) + λLstrong(f(g(xi)), f

′(g′(xi)))+ (1)

L(ywi , f(g(x
w
i ))) + λLweak(f(g(xi)), f

′(g′(xi)))+ (2)

L(yfbi , fFB(g(x
s
i ))) + λLstrong(fFB(g(xi)), f

′
FB(g

′(xi))) (3)

where L(·, ·) is a binary cross-entropy classification loss,
Lstrong(·, ·) and Lweak(·, ·) are mean-square error consistency costs
on strong (frame-level) and weak (clip-level) predictions, respec-
tively. The consistency weight λ is tied to all consistency costs and
increases gradually as training progresses.

5. DOMAIN ADAPTATION FOR SOUND EVENT
DETECTION

The main idea of the proposed adaption method for sound event
detection relies on joint distribution optimal transport (JDOT) of
feature embeddings [2], which seeks to align the joint distribution

of embedded feature representations and labels of two shifted do-
mains.

Let µs and µt are measures on the product space X × Y . The
cost associated to this space can be expressed as a weighted combi-
nation of costs in the feature and label spaces as follows,

d(xsi ,y
s
i ;x

s
j ,y

s
j ) = αc(xsi ,x

t
j) + βtL(ysi ,ytj) (4)

for the i-th source and j-th target element, and where c(·, ·) is cho-
sen as a `22 distance and L(·, ·) is a classification loss. Parameters
α and β are two scalar values weighting those two terms. Since
no labels are available in target domain, ytj , they are replaced with
a class prediction f(xtj) from a classifier f : X → Y . Account-
ing for the classification loss, leads to the following minimization
problem:

min
f,γ∈Γ(µs,µt)

< γ,Cf >F , (5)

where Cf depends on f and comprises all the pairwise costs d.
For the adaptation task, we regard the synthetic dataset with

strong labels as the source domain S = DS , and the combination of
real recordings from the weakly and unlabeled dataset as the target
domain T = DW ∪ DU .

We propose a two-step frame-level domain adaptation method
based on the joint distribution matching of the learned semantic au-
dio embeddings using optimal transport (OT). In the first step, with
CRNN fixed parameters (evaluation mode) we compute the optimal
coupling matrix

min
γ∈Γ(µs,µt)

m∑
i,j=1

γij(α||g(xsi )−g(xtj)||2+βL(ysi , f(g(xtj)))) (6)

In the second step, with fixed γ, we update model parameters g
and f using the following objective

1

m

m∑
i=1

Ls +
m∑

i,j=1

γij(α||g(xsi )− g(xtj)||2 + βL(ysi , f(g(xtj))))

(7)
where Ls correspond to the classification cost on source domain to
avoid forgetting the distribution of synthetic data.



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

Figure 2: Proposed optimal transport-based method to correct domain mismatch between sound embeddings with active and inactive sound
events.

5.1. Sampling strategy for domain adaptation

The sampling strategy for domain adaptation corresponds to select-
ing active (labeled) and inactive (unlabeled) frames from the seman-
tic representation g : x→ z learned by the CRNN model.

For each data batch we sampleNs
a active frames from synthetic

as indicated by the strong labels (oracle sampling), as well as N t
a

active and inactive frames from real data as indicated by the frame-
level pseudo-labels assigned by the model to the real data. For both
types of data we keep only frames with no sound event overlap, i.e.,
only one sound event class is active per sampled frame. The amount
of sampled active frames per class can vary considerably for syn-
thetic and real data and in some cases classes might be missing in
one type of data. To partially account for this class data imbalance
we keep only active frames from all classes appearing in both syn-
thetic and real data, and from that, we re-sample in a class-wise
manner Nc = min(Ns

c , N
t
c), c = 1, . . . , Ca samples, where Ca

is the total number of sound classes active in the batch, leading to
Na =

∑Ca
c=1 Nc frames sampled for each type of data.

Similarly, the amount of inactive frames in synthetic and real
data varies from each batch. So, after sampling Ns

in and N t
in in-

active frames as indicated by the strong labels and pseudo-labels
from synthetic and real data, respectively, we keep only Nin =
min(Ns

in, N
t
in).

5.2. Pseudo label refinement

To improve the reliability of the pseudo-labels assigned to real data,
we leverage the provided annotations of the weakly labeled set. The

refinement process consists of fusing the frame-level predictions of
the model on the real data with their clip-level annotations by an
element-wise multiplication,

ŷt = f(g(xtj))� ywj , j = 1, . . . , nw (8)

This operation constrains the output prediction labels to contain at
most the same classes present in the weakly labeled soundscapes.
Filtering out all extra classes helps reduce false positive predictions
and consequently more reliable pseudo-labels for domain adapta-
tion are obtained.

5.3. Frame-level domain adaptation

After frame-level sampling and pseudo-label refinement, adaptation
is performed by the DeepJDOT method by aligning the distributions
of class-sampled active and inactive frames. To this end, two sepa-
rate cost functions are jointly optimized to account for the mismatch
between synthetic and real soundscapes. The system is adapted by
minimizing the overall training objective

Ls + La + Lin (9)

where Ls corresponds to the first and third classification cost terms
of the training classification cost,

Ls =
1

ns

ns∑
i=1

L(ysi , f(g(x
s
i ))) +

1

ns

ns∑
i=1

L(yfbi , fFB(g(x
s
i ))).

(10)
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Table 1: Performance on development and evaluation sets.
Method F1 score F1 score

val val eval eval
+HMMs +HMMs

Baseline 34.8

Baseline++ 40.1

Baseline + FB 43.12 45.42 46.06 49.38
Baseline + FB + DA 45.68 47.77 50.79 53.10

Ensemble 1 45.13 48.07 50.58 53.35
Ensemble 2 45.15 47.08 50.28 52.23

Note that only the student model is undergoing adaptation, there-
fore, no consistency losses are included in the above objective to
train the source domain classifier.

Costs function La corresponds to the distribution alignment
loss of active frames,

La =
1

Ca

Na∑
i,j

γaij(α||g(xsi )− g(xtj)||2 + βL(ysi , ŷt)). (11)

Note that La is averaged by the number of active classes Ca in the
batch. The second term in the loss enforces regularity of the target
classifier with the available source data.

Finally, cost function Lin corresponds to simply the distribu-
tion alignment loss of inactive representation embeddings, and no
consistency loss is required.

Lin =

Nin∑
i=1

γinij (α||g(xsi )− g(xtj)||2) (12)

Experiments with optimal transport were performed using the
Python Optimal Transport package [6]. We used cost weights α =
0.02 and β = 5.0. Also, the contribution of the source classifier
cost Ls was increased by 100 during the adaptation stage. Figure 2
depicts the proposed frame-level domain adaptation strategy.

5.4. Post-processing of final predictions

Rather than using median filtering to post-process predictions, we
used Hidden-Markov-Model (HMM) decoding. Following the same
procedure as in [7], a two-state HMM was employed for each sound
class, while the silence self-loop transition probability was tied to
be the same for all HMMs. The class-wise transition probabilities
and silence were tuned using 50% of the validation set by using
Random Forest and maximizing the event based F1- macro-average
score of the trained model. The optimal computed values for the
HMMs transition probabilities were used as prediction refinement
by running Viterbi decoding on the model’s emission probabilities
for each class.

5.5. Results

In table 1 we compare results obtained on the validation and public
evaluation sets in terms of the event-based macro F1 score by the
proposed improvements to the baseline model. Models labeled as
Baseline and Baseline++ correspond to the 2020 and 2021 challenge
editions, respectively. For each set we also show performance after
post-processing the final predictions with HMM smoothing.

We can see that adding a foreground-background auxiliary (FB)
branch is beneficial to the sound event detection task as it improved
results from Baseline and Baseline++ by 8.3% and 3%, respectively.
Further improvement was achieved by refining predictions with
HMM smoothing, as performance increased by 10.6% and 5.3%,
respectively.

Performing adaptation by the proposed approach after train-
ing brought additional improvement, and combined with HMM
smoothing the best score on the validation and public evaluation
sets were obtained. Note that after adaptation the F1 score on
the validation set only improved by around 2.5%, but a signifi-
cant improvement was achieved on the public evaluation set, as the
score improved by around 4.7%. This higher improvement might
be due to the fact that the empirical distribution of the active and
inactive frames of this set, resembles more that of the provided
real training data from which adaptation was carried out. Ensem-
ble 1 and Ensemble 2 are model ensembles comprising three and
two Baseline + FB + DA systems from different training runs, re-
spectively. Predictions from the ensembles are simply the average
of their individual predictions. Only Ensemble 1 achieved an im-
provement in the validation set compared to a single system. These
models correspond to the submissions made for the DCASE 2021
Challenge task 4 and are labeled Olvera INRIA task4 SED 1 and
Olvera INRIA task4 SED 2, respectively.

5.6. Conclusion

In this work we described our systems for the task 4 of the DCASE
2021 Challenge corresponding to the sound event detection task.
Motivated by the categorization of the spectro-temporal character-
istics of domestic sounds in foreground and background, we pro-
posed the use of an auxiliary foreground-background classifier that
is jointly trained with the baseline system to improve generaliza-
tion in the detection of sound events. Furthermore, we proposed to
incorporate an adaptation stage based on the joint distribution op-
timal transport of feature embeddings to account for the acoustic
mismatch between the available synthetic and real data for training.
We showed that the multi-task training approach together with the
adaptation stage brought a substantial improvement to the perfor-
mance of the baseline system.
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