
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

SEPARABLE CONVOLUTIONS AND TEST-TIME AUGMENTATIONS FOR
LOW-COMPLEXITY AND CALIBRATED ACOUSTIC SCENE CLASSIFICATION

Technical Report

Gilles Puy Himalaya Jain Andrei Bursuc

valeo.ai, Paris, France

ABSTRACT
This report details the architecture we used to address Task 1a of the
of DCASE2021 challenge. Our architecture is based on 4 layer con-
volutional neural network taking as input a log-mel spectrogram.
The complexity of this network is controlled by using separable
convolutions in the channel, time and frequency dimensions. We
train different models to investigate the benefit of mixup, focal loss
and test time augmentations in improving the performance of the
system.

The code and trained models are available at https://
github.com/valeoai/SP4ASC.

1. INTRODUCTION

In this work, we address the Task 1a of DCASE2021 [1]. The task
aims at acoustic scene classification (ASC) with a low-complexity
model. More specifically, the task is to classify acoustic scenes
recorded from different devices into ten predefined classes. The
classification model is constrained to fit in 128 KB, which would be
65 K parameters using float16 data type.

The dataset provided for this task is TAU Urban Acoustic
Scenes 2020 Mobile [2]. It contains audio recordings from 12 Euro-
pean cities recorded with 4 different devices. In addition, the dataset
has simulated data for 11 mobile devices. The development set of
the dataset contains recordings from 10 cities, 9 devices (3 real and
6 simulated) while the evaluation set has data from 12 cities and 11
devices. There are 2 cities and 6 devices (1 real and 5 simulated)
that are only present in the evaluation set.

2. NETWORK ARCHITECTURE

Our architecture is based on CNN6 described in [3]. This network
consists of 4 convolutional layers using 5× 5 filters, as in AlexNet
architecture [4], followed by a global pooling layer and a final MLP.

The number of parameters in CNN6 is above the required limit
of 65 K parameters. We detail in this section our choices to reduce
the number of parameters below this limit. Our main ingredient is
the change of each of the original 5 × 5 convolutional layers by
separable convolutions along the channel, time and frequency axes.
Note that one can find similar ideas in, e.g., MobileNets [5], [6]
for videos or [7] for audio. Finally, we also adapt the number of
channels in each layer to meet the required constraint in number of
parameters.

2.1. Convolutions

Let X ∈ Rn×cin denote a feature map of spatial dimension n with
cin channels. In the original convnet CNN6, the feature maps from

Layer Feat. size Param. (test)

BN-mel 1× 431× 256 512

Conv-BN-ReLU-Pool 64× 215× 128 512
Conv-BN-ReLU-Pool 128× 107× 64 9088
Conv-BN-ReLU-Pool 128× 53× 32 17280
Conv-BN-ReLU-Pool 128× 26× 16 17280

Global Pooling 128 0
MLP 10 17802

Total 62474

Table 1: Network architecture. The size of feature maps at each
layer appears in the middle column under the form C × T × F
where C, T and F are the number of channels, time dimension and
frequency dimension, respectively. The number of parameters in
each layer at test time is also reported in the last column.

Figure 1: Conv-BN-ReLU-Pool layer. The separable convolution
block shows the architecture we use in place of 5× 5 convolutions
in CNN6.

one layer to the next satisfy

Y = f5×5(X), (1)

where f5×5 : Rn×cin → Rn×cout denotes a regular convolution
layer with a kernel of size 5 × 5 (no bias) giving a feature map
Y of spatial dimension n with cout channels. This layer contains
252cincout parameters.

To reduce the number of parameters, we replace (1) by

Y = h3×1 (g1×1(X)) + h1×3 (g1×1(X)) , (2)

where g1×1 : Rn×cin → Rn×cout denotes a regular convolution
layer with a kernel of size 1 × 1, and h3×1, h1×3 : Rn×cout →
Rn×cout denote two different channel-wise convolutions with ker-
nels of size 3 × 1 and 1 × 3, respectively, dilated by 2 to keep a
receptive field similar to the one of g5×5. This reduces the number



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

of parameters to (cin + 6)cout. Note that none of the convolutional
layers contain any bias parameter.

2.2. Batch normalisation

Our network is trained using a batch normalisation layer after each
convolutional layer (2), adding 4cout parameters per layer. How-
ever, at testing time, we reduce the number of parameters by merg-
ing each convolution layer with its following batch normalisation
layer, hence effectively adding cout parameters per layer, in the
form of a bias, after each convolution (2).

For completeness, we detail now how we merge the parameters
of the convolutional and batch normalisation layers after training.
At the end of the training process, the `th channel of Y in (2) after
batch normalisation satisfies

ỹ(`) = γ(`)

[
w

(`)
3×1 ∗ x̃(`) + w

(`)
1×3 ∗ x̃(`) − µ(`)

σ(`)

]
+ β(`), (3)

where ∗ denotes the 2D convolution, µ(`), σ(`), γ(`) and β(`) are the
running mean, running standard deviation, scale and bias parame-
ters of the batch normalisation layer on the `th channel, x̃(`) de-
notes the `th channel of g1×1(X), and w(`)

3×1, w(`)
1×3 the correspond-

ing channel-wise convolutional filters. At test time, we compute

ỹ(`) = w̃
(`)
3×1 ∗ x̃

(`) + w̃
(`)
1×3 ∗ x̃

(`) + β̃(`), (4)

where

w̃
(`)
·×· =

γ(`)

σ(`)
w

(`)
·×· and β̃(`) = β(`) − γ(`)

σ(`)
µ(`). (5)

Hence, in addition to the parameters involved in (2), cout additional
parameters β̃(`) are involved after batch normalisation at test time.

2.3. Complete Architecture

The network architecture is presented in Table 1. It contains 64 330
parameters at train time and 62 474 at test time.

The input is a log-mel spectrogram computed from the com-
plete audio signal of 10 seconds, sampled at 44.1 KHz, using 2048
points for the FFT, a hop size of 1024, and 256 mel-bins. The gen-
erated spectrogram has size 431× 256.

The first layer, denoted by BN-mel, consists of a batch normali-
sation of each mel-bin. This layer is transformed into an affine layer
at test time by merging its scale and bias parameters with the esti-
mated running statistics (as in (5)). At test time, this layer contains
512 parameters.

The layers denoted by Conv-BN-ReLU-Pool, shown in Figure
1, consist of a convolutional layer satisfying (1), a batch normalisa-
tion layer, a ReLU activation, and an average pooling layer applied
sequentially. The average pooling layer reduces the resolution by 2
in the time and frequency axes with a kernel of size 2× 2.

The global pooling layer consists of (i) a global averaging pool-
ing along the frequency axis followed by (ii) a global averaging and
a max pooling along the time axis, the results of both pooling being
summed together to yield a feature vector of size 128 that enters
the final MLP for classification. This MLP contains two layers with
a hidden dimension of 128 using a ReLU activation in the hidden
layer.

Syst. MixUp CE FL TTA Log loss Accuracy

1 X X 0.90 66.8%
2 X X X 0.93 66.2%
3 X X 0.88 68.7%

Table 2: Performance of different train/test strategies. Scores
obtained on the validation set of [2] using different training strate-
gies – MixUp or not, cross entropy (CE) or focal loss (FL) – and
test-time augmentations (TTA) or not.

3. TRAINING PROCEDURE

The model is trained for 200 epochs, with a batch size of 32, a
weight decay of 10−5, using AdamW with a starting learning rate
of 10−3 and a cosine annealing scheduler decreasing the learning
rate to 10−5. We use two dropout layers [8]: the first on the input
of the final MLP and the second on its hidden layers. These layers
drop each neuron with probability 0.2.

For all submitted systems, we use SpecAugment [9] on the log-
mel spectrogram using two masks of size at most 128 on the time
axis and two masks of size at most ∆F on the frequency axis. We
also investigate the benefit of MixUp [10] with α = 0.2 during
training to improve the log loss at test time. The systems are trained
on the training split provided by [2] and evaluated on the provided
validation split.

All but one system are trained by applying a softmax on the final
logits and using the cross-entropy loss. The last system is trained
with the focal loss.

Focal Loss. The focal loss [11] is a popular objective function
for computer vision tasks that suffer from significant class imbal-
ance in terms of number of samples per class and class difficulty,
e.g., object detection, semantic segmentation. In a nutshell, the fo-
cal loss drives away the network’s focus from easy well-classified
examples, that eventually dominate training, towards harder incor-
rectly classified ones, that can be more informative.1 Mukhoti
et al. [12] have recently shown that the focal loss mitigates the
overconfidence pathological behavior of deep neural networks [13]
leading to well calibrated classifiers. Even though smaller net-
works, such as the one we propose here, do not necessarily suf-
fer from overconfidence [13], we argue the utility of the focal loss
in addressing difficult or ambiguous samples that are typically in-
between similar classes and that can be prone to annotation error,
e.g., metro station vs. metro, street pedestrian vs.
public square. Given such a sample at an intermediate training
point, if the network predicts a low probability for the correct class
the focal loss will insist on increasing its probability. Conversely, if
the network predicts a high probability for the correct class, then it
will not insist further in reducing the negative log-likelihood (NLL)
and avoiding overconfidence, unlike the cross entropy loss that aims
to reduce the NLL equally for all samples, even correct ones with
already high probability predictions. We expect the focal loss to
align the predicted and target distributions, while increasing the en-
tropy of the predicted distribution [12], leading to better logs loss
scores. In our experiments, we consider the fixed focal loss with
γFL = 1. More elaborate strategies for scheduled or adaptive γFL

during training can be designed according to the dataset and the

1We use the following definition of the focal loss:
LFL(p̂t)=−(1−p̂t)γ

FL log(p̂t), where p̂t is the predicted probabil-
ity of the correct class.



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

neural network architecture [12], but we did not explore this direc-
tion.

4. TEST TIME EVALUATION

The network presented above is trained using parameters in float32
type. At the end of the training procedure, each batch normalisation
layer is combined with its previous convolution layer to reduce the
number of parameters. The resulting 62 474 parameters are then
cast in float16, yielding a model size of 122 KB to be saved on disk.

Before testing, these float16 parameters are loaded on GPU and
cast into float32 type. The log-mel spectrograms are computed
using float32 precision and all computations are thus done with a
float32 precision on the GPU.

System 1 “ce tta”: This system is trained using cross entropy,
SpecAugment with ∆F = 32 and dropout. We also use SpecAug-
ment at test time to improve the log loss and the accuracy. We aver-
age the softmax predictions from 30 different augmentations. This
test time augmentations permit us to improve the log loss from 1.10
to 0.90 and the accuracy from 65.8% to 66.8% on the validation
set.

System 2 “ce mu tta”: This system is trained using cross en-
tropy, SpecAugment with ∆F = 16, and MixUp. We also use
SpecAugment at test time, averaging the softmax predictions from
30 different augmentations. This test-time augmentations permit
us to improve the log loss from 0.96 to 0.93. The accuracy is un-
changed, reaching 66.2% on the validation set.

System 3 “fl tta”: This system is trained with focal loss,
SpecAugment with ∆F = 32. We also use SpecAugment at test
time, averaging the softmax predictions from 30 different augmen-
tations. This test-time augmentations permit us to improve the log
loss from 0.95 to 0.88 and the accuracy from 66.7% to 68.3% on
the validation set.

All scores obtained on the validation set of [2] are reported in
Table 2. Note that because of test-time augmentations, these scores
vary slightly from one evaluation to another.

5. REFERENCES

[1] I. Martı́n-Morató, T. Heittola, A. Mesaros, and T. Virta-
nen, “Low-complexity acoustic scene classification for multi-
device audio: analysis of DCASE 2021 Challenge systems,”
arXiv:2105.13734, 2021.

[2] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic scene
classification in DCASE 2020 Challenge: generalization
across devices and low complexity solutions,” in Proc. of the
Detection and Classification of Acoustic Scenes and Events
2020 Workshop (DCASE2020), 2020. [Online]. Available:
https://arxiv.org/abs/2005.14623

[3] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “Panns: Large-scale pretrained audio neural net-
works for audio pattern recognition,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 28,
pp. 2880–2894, 2020.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Ad-
vances in Neural Information Processing Systems (NeurIPS),
vol. 25, 2012.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” arXiv:1704.04861, 2017.

[6] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and
M. Paluri, “A closer look at spatiotemporal convolutions for
action recognition,” in Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018.

[7] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen, “Slow-
fast auditory streams for audio recognition,” in ICASSP 2021
- 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2021, pp. 855–859.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastava14a.html

[9] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition,”
in Proc. of Interspeech, 2019, pp. 2613–2617. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2019-2680

[10] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018. [On-
line]. Available: https://openreview.net/forum?id=r1Ddp1-Rb

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2980–
2988.

[12] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. H. Torr,
and P. K. Dokania, “Calibrating deep neural networks using
focal loss,” in Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[13] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibra-
tion of modern neural networks,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1321–1330.


