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ABSTRACT 

In this technical report, we describe our acoustic scene classifica-

tion methods submitted to detection and classification of acoustic 

scenes and events challenge 2021 task 1a. We extracted the log-

Mel filter bank features with delta and delta-delta from the acous-

tic signals and applied normalization. A total of 6 data augmenta-

tions were applied as follows: mixup, spectrum augmentation, 

spectrum correction, pitch shift, speed change, and mix audios. In 

addition, we designed MobileNet using coordinate attention and 

fusions. Inspired by MobileNetV2, inverted residuals and linear 

bottlenecks are adapted for mobile blocks of the proposed Mo-

bileNet. We applied coordinate attention and early/late fusion 

methods after mobile blocks. In addition, we reduced the model 

size by applying weight quantization to the trained model. Exper-

iments were conducted on the cross-validation setup of the official 

development set. We confirmed that our model achieved a log-

loss of 1.040 and an accuracy of 72.6% within the 128 KB model 

size. 

Index Terms— Low-complexity acoustic scene classi-

fication, multiple devices, data augmentation, MobileNet, 

coordinate attention 

1. INTRODUCTION 

Acoustic scene classification (ASC) is a problem that takes an 

acoustic signal as input and classifies it into an appropriate acous-

tic scene. In particular, various research has been published for 

several years through the detection and classification of acoustic 

scenes and events (DCASE) challenge [1-3]. Specifically, the 

DCASE 2021 Challenge task 1a aims to classify a 10-second 

acoustic signal recorded by multiple devices [3]. At the same time, 

the model complexity limit of 128 KB is set for the non-zero pa-

rameters. As an evaluation metric, the average of the class-wise 

log loss is used along with the average of the class-wise accuracies. 

In this technical report, we propose the following three meth-

ods. First, normalization and augmentation are applied to the log-

Mel filter bank feature. Second, we propose MobileNet using co-

ordinate attention and fusions. Finally, weight quantization is ap-

plied to the trained model for low-complexity. These are explained 
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in Chapters 2 and 3, respectively. Section 4 shows the results for 

submission, and Section 5 concludes. 

2. DATA PREPROCESSING AND AUGMENTATIONS 

2.1. Datasets 

The DCASE 2021 task 1a dataset consists of a development set 

and an evaluation set [2]. The acoustic scene classes in the dataset 

as follows: airport, shopping mall, metro station, street pedestrian, 

public square, street traffic, tram, bus, metro, and park. 

As shown in Table 1, the development set consists of 10-sec-

ond segments recorded with 3 real devices (A~C) and 6 simulated 

devices (S1~S6). The total duration and the number of segments 

are 64 hours and 23,040, respectively. As the cross-validation 

setup, the development set is split into 70% training set and 30% 

test set. In this case, several segments are not used for the balanced 

test set. Also, 3 simulated devices (S3~S6) are included only in 

the test set. The number of segments in the training/test sets is 

13,965 and 2,970, respectively.  

The evaluation set consists of 10-second segments recorded 

with 11 devices including 1 real device (D) and 4 simulated de-

vices (S7~S11). The total number of segments is 7,920. The eval-

uation set is only used for submission. 

Table 1: The overview of datasets. 

Description Devices Segments 

Dev. set (full) 9 23,040 

Dev. set (cross-val., training) 6 13,965 

Dev. set (cross-val., test) 9 2,970 

Eval. set 11 7,920 

 

2.2. Data Preprocessing 

All audio segments are formatted with a mono channel, 44 kHz 

sampling rate, and 24-bit resolution per sample. For each 10-sec-

ond input segment, 2048 FFT points were performed to every 

1024 samples, and a power spectrum was extracted. That is, the 

number of bins of one power spectrum is 431.  
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Next, log-Mel filter bank features with 128 frequency bins 

were extracted, and mean and variance normalization was applied 

to each frequency bin. Also, delta and delta-delta were calculated 

from the normalized log-Mel filter bank features and stacked into 

the channel axis. Therefore, one input feature has the shape of 

128×423×3. 

2.3. Data Augmentations 

Inspired by [4-6], the following data augmentation method was 

applied to the features: mixup [4], spectrum augmentation [5], 

spectrum correction [6], pitch shift, speed change, and mix audios. 

Mixup and spectrum augmentation were used in the training 

process. For each mini-batch, the input features were randomly 

masked on the time and frequency axes, and then a mixup was 

applied with an alpha value of 0.4. 

The other augmentation methods such as spectrum correc-

tion, pitch shift, speed change, and mix audios were applied be-

fore training. For spectrum correction, reference device spectrums 

were generated by averaging the spectrum from all training de-

vices except device A. The spectrums of device A were corrected 

by using the reference device spectrum. In addition, the acoustic 

signals of all training datasets were augmented by randomly shift-

ing the pitch and randomly changing the speed with padding and 

cropping. Also, the randomly mixing acoustic signals between the 

same classes were applied. As a result of data augmentations, the 

amount of the total training data set is increased as shown in Table 

2. 

Table 2: The comparison of data amount according to 

augmentation methods. 

Description Devices Segments 

Dev. set (full) 9 106,560 

Dev. set (cross-val., training) 6 66,075 

 

3. PROPOSED MOBILENET 

3.1. Architectures 

Inspired by MobNet [6] and MobileNetV2 [7], we designed two 

MobileNet. The one is MobileNet using coordinate attention [8] 

in Table 3, and the other is MobileNet using coordinate attention 

and fusions in Table 8. Hyperparameters of the proposed net-

works were determined by using grid search in the various exper-

iments. 

As shown in Table 3, the first proposed MobileNet mainly 

consists of mobile blocks and coordinate attention. The first 2-

dimensional convolution layer and three mobile blocks are used 

to input features. Each mobile block consists of 32, 48, and 64 

channels, and is designed to have wide channel dimensions. Then, 

batch normalization (BN) and ReLU activation functions are ap-

plied to the features. Next, after one convolution layer and drop-

out regularization with a 0.3 ratios, the coordinate attention is ap-

plied to the features. Finally, the features generated from coordi-

nate attention are fed into the last convolution layer, and global 

average pooling (GAP) and softmax are applied. 

Table 3: The architecture of the proposed MobileNet using 

coordinate attention. 

Description Configuration Output shape 

Input - 128×423×3 

Conv2D 32, 3×3, stride={2,2} 64×212×32 

BN + ReLU - - 

Mobile block 32, 3×3, stride={2,2} 32×106×32 

Mobile block 48, 3×3, stride={2,2} 16×53×48 

Mobile block 64, 3×3, stride={2,2} 8×27×64 

Conv2D 64, 1×1, stride={1,1} 8×27×64 

BN + ReLU twice - 

Conv2D 64, 1×1, stride={1,1} 8×27×64 

Dropout 0.3 - 

Coordinate att. r = 4 8×27×64 

BN - - 

Conv2D 10, 1×1, stride={1,1} 8×27×10 

BN - - 

GAP - 1×10 

Softmax - 1×10 

 

The inverted residuals and linear bottlenecks, proposed by 

MobileNetV2 [7], are applied to the mobile blocks of proposed 

MobileNet. As shown in Table 4, the mobile block consists of one 

bottleneck with stride 2 and two bottlenecks with stride 1. All bot-

tlenecks are narrow-wide-narrow structures. The output features 

generated in the previous bottleneck are passed to the next bottle-

neck linearly without activations. 

Table 4: The architecture of the mobile block. 

Description Configuration Output shape 

Input - H×W×Cin 

Bottleneck Cout, 3×3, stride={2,2} H/2×W/2×Cout 

Bottleneck-res. Cout, 3×3, stride={1,1} H/2×W/2×Cout 

Bottleneck-res. Cout, 3×3, stride={1,1} H/2×W/2×Cout 

 

Table 5: The architecture of the bottleneck. 

Description Configuration Output shape 

Input - H×W×Cin 

Conv2D 2Cin, 1×1, stride={1,1} H×W×2Cin 

BN + ReLU - - 

Depthwise2D 2Cin, 3×3, stride={2,2} H/2×W/2×2Cin 

BN + ReLU - - 

Conv2D Cout, 1×1, stride={1,1} H/2×W/2×Cout 

BN - - 

 

Table 6: The architecture of the bottleneck-residual. 

Description Configuration Output shape 

Input - H×W×Cin 

Conv2D 2Cin, 1×1, stride={1,1} H×W×2Cin 

BN + ReLU - - 

Depthwise2D 2Cin, 3×3, stride={1,1} H×W×2Cin 

BN + ReLU - - 

Conv2D Cout, 1×1, stride={1,1} H×W×Cout 

BN - residual 

Add residual + input H×W×Cout 
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As shown in Table 5 and Table 6, in the bottleneck with 

stride 2, the feature dimension is reduced by half through the 

depth-wise convolution layer. On the other hand, in the bottleneck 

with stride 1, it is trained while maintaining the feature dimension, 

and skip connections are applied. Also, all bottlenecks are applied 

to channel expansion at the first convolution layer and recovered 

at the last convolution layer. 

3.2. Coordinate Attention 

We adopted a novel attention mechanism for mobile networks by 

embedding positional information into channel attention named 

coordinate attention. Unlike squeeze-and-excitation channel at-

tention [9], coordinate attention decomposes channel attention 

into two feature encoding using bi-directional average pooling. It 

can train the log-range dependencies and accurate location infor-

mation in the feature maps [8].  

As shown in Table 7, two 2-dimensional average pooling are 

used for the X and Y axes. Next, after the output features are con-

catenated, the number of channels is adjusted according to the 

value of the reduction ratio r. As the activation function after BN, 

swish activation using ReLU6 is used [8]. Then, it is split into X 

and Y axes to generate each attention weight. These attention 

weights are applied multiplication to the input features. 

Table 7: The overview of coordinate attention. 

Description Configuration Output shape 

Input - H×W×C 

AvgPool2D 
1×W, stride={1,1}, 

H×1, stride={1,1} 

1×W×C, 

H×1×C 

Concat - (H+W)×1×C 

Conv2D C/r, 1×1, stride={1,1} (H+W)×1×C/r 

BN + Act. - - 

Split - 
1×W×C/r, 

H×1×C/r 

Conv2D C, 1×1, stride={1,1} 
1×W×C, 

H×1×C 

Sigmoid - att. weights 

Mul input * att. weights H×W×C 

 

3.3. Fusions 

The fusion methods, as well as coordinate attention, were applied 

for the proposed MobileNet. As shown in Table 8, two output fea-

tures generated by different strides in the first convolution layer 

are fused (early fusion). Also, the output features of the last con-

volution layer are split in half. For the separated features, coordi-

nate attention is applied to one side and is not applied to the other 

side. Then, GAP and softmax are applied to both output features, 

and the probability values are fusion (late fusion).  

We confirmed through an experiment that these early and 

late fusions produced similar effects to the ensemble when applied 

together. We also applied various strides for the first convolu-

tional layer. Unlike stride {2, 1}, which can be fuse along the time 

axis, stride {1, 2} can be fused along the frequency axis, and stride 

{2, 2} can be fused in both directions. In the case of split operation, 

it was confirmed that proper performance was obtained only when 

the axis of early fusion was the same. 

Table 8: The architecture of the proposed MobileNet using 

coordinate attention and fusions with stride {2, 1}. 

Description Configuration Output shape 

Input - 128×423×3 

Conv2D 
32, 3×3, stride={2,2}, 

32, 3×3, stride={2,1}, 

64×212×32, 

64×423×32 

Early fusion - 64×635×32 

BN + ReLU - - 

Mobile block 32, 3×3, stride={2,2} 32×318×32 

Mobile block 48, 3×3, stride={2,2} 16×159×48 

Mobile block 64, 3×3, stride={2,2} 8×80×64 

Conv2D 64, 1×1, stride={1,1} 8×80×64 

BN + ReLU twice - 

Conv2D 72, 1×1, stride={1,1} 8×80×72 

Dropout 0.3 - 

BN - - 

Conv2D 10, 1×1, stride={1,1} 8×80×10 

BN - - 

Split - 
8×40×10, 

8×40×10 

Coordinate Att. 

+ GAP  

+ Softmax 

r = 8 1×10, outA 

GAP  

+ Softmax 
- 1×10, outB 

Late fusion 0.5*outA + 0.5*outB 1×10 

 

3.4. Weight Quantization 

Task 1a limits a model complexity to 128KB (only for non-zero 

parameters). We applied weight quantization to the trained model 

using Tensorflow-Lite converter. It can be converted from A 32-

bit Tensorflow format to an 8-bit Tensorflow-Lite format. 

3.5. Training Setup 

All experiments in this paper were conducted using Tensor-

flow2.0 and Keras. The optimizer used the stochastic gradient de-

scent with a 0.9 momentum weight and a 10-6 decay. Also, cate-

gorical cross-entropy loss was used. All our models were trained 

for 256 epochs with a batch size of 32. The initial learning rate 

was set to 0.1. At epochs 3, 7, 15, 31, 127, and 255, the learning 

rate was reset to obtain the re-training effect. We used the check-

point with the lowest validation log-loss (or highest validation ac-

curacy) as the best model. Our code is available at 

https://github.com/sunshines14/DCASE2021 

4. RESULTS AND SUBMISSIONS 

The experimental results and details of submissions can be con-

firmed in Table 9~11. We selected the following four models for 

submission among various models: proposed MobileNet using co-

ordinate attention (tag 1), proposed MobileNet using coordinate 

attention and fusion with stride {2, 1} (tag 2), proposed Mo-

bileNet using coordinate attention and fusion with stride {2, 2} 

(tag 3), proposed MobileNet using coordinate attention and fusion 

with stride {1, 2} (tag 4). 
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Table 9: The overall performances of submissions. 

Description Size Loss Acc. Tag 

Official baseline 90.3 1.473 47.7 - 

Coordinate att. 125 1.040 69.0 1 

Fusion stride 21 126.5 1.089 72.6 2 

Fusion stride 22 126.6 1.092 72.1 3 

Fusion stride 12 126.5 1.106 72.6 4 

 

Table 10: The class-wise log-losses of submissions. 

Class / Tag 1 2 3 4 

Airport 1.504 1.138 1.248 1.360 

Bus 0.708 0.790 0.744 0.869 

Metro 0.892 1.063 1.022 1.135 

Metro station 0.914 1.134 1.115 1.101 

Park 0.703 0.837 0.893 0.827 

Public square 1.434 1.304 1.420 1.400 

Shopping mall 1.231 1.098 1.032 1.161 

Street pedestrian 1.475 1.550 1.659 1.457 

Street traffic 0.502 0.785 0.653 0.681 

tram 0.948 1.193 1.130 1.064 

 

Table 11: The class-wise log-losses of submissions. 

Device / Tag 1 2 3 4 

A 0.985 0.978 0.984 1.018 

B 1.079 1.156 1.111 1.164 

C 1.010 1.034 1.080 1.064 

S1 1.026 1.110 1.128 1.102 

S2 1.050 1.125 1.124 1.109 

S3 1.045 1.108 1.080 1.108 

S4 1.035 1.070 1.093 1.106 

S5 1.070 1.090 1.106 1.137 

S6 1.061 1.134 1.117 1.143 

 

5. CONCLUSION 

This technical report aims to describe our low-complexity ASC 

models for DCASE 2021 task 1a. We extracted log-Mel filter bank 

features and applied normalization/augmentations. We designed 

MobileNet using coordinate attention and fusions and applied 

weight quantization. Experiments were conducted on the cross-

validation setup of the official development set. We confirmed that 

our model achieved a log-loss of 1.040 and an accuracy of 72.6% 

within the 128 KB model size. 
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