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ABSTRACT

In this paper, we describe in detail our systems for DCASE 2021
Task 4. The main module in our systems is named MLFL, which
uses metric learning and focal loss, adopts the weakly-supervised
learning framework with an attention-based embedding-level pool-
ing module and the mean-teacher method for semi-supervised learn-
ing. To better utilize the synthetic data, the system adopts metric
learning with inter-frame distance contrastive loss to perform do-
main adaptation. We also employ a sound event detection branch
with focal loss to use the strong labels of synthetic data and pseudo
strong labels of the weakly-labeled and unlabeled data. The pseudo
labels are generated using the forward-backward convolutional re-
current neural network (FBCRNN) model. In addition, we also uti-
lize the tag-conditioned CNN as predicting module, which is trained
by the pseudo labels of the weakly-labeled and unlabeled data out-
put by our model and conduct sound event detection. The experi-
mental results prove that our system can achieve competitive results.

Index Terms— metric learning, focal loss, mean-teacher

1. INTRODUCTION

Task 4 of DCASE 2021 [1] is the follow-up to Task 4 of DCASE
2020 [2]. The goal of DCASE 2021 Task 4 is to explore the use of
a large amount of unbalanced unlabeled data and synthetic data, as
well as a small weakly annotated training set to improve the perfor-
mance of the sound event detection (SED) system. DCASE 2021
task 4 contains three subtasks: SED with silent separation, SED
with acoustic separation, and acoustic separation (using the SED
baseline system). We focus on the first subtask, namely, SED with-
out source separation preprocessing. The SED task not only needs
to provide event categories, but also needs to provide the onset and
offset of the event.

In this paper, we describe in detail the system participating in
the first subtask in task 4 of DCASE2021. There are three kinds
of data in this challenge, including weakly-labeled real data, unla-

beled real data and strongly-labeld synthetic data. The main mod-
ule in our model mainly uses metric learning and focal loss, and is
named MLFL. To utilize the weakly-labeled real data, the module
adopts the weakly-supervised learning framework, which uses the
embedding-level attention pooling as the pooling method [3]. To
utilize the unlabeled real data in our system and to better utilize the
real weakly-labeled data, we adopts two semi-supvervised learn-
ing methods, including mean teacher and generating strong pesudo-
labels. For the mean teacher method, it focuses on using the unla-
beled data. For generating strong pesudo-labels, we use the pseudo-
labels generated by the FBCRNN model [4] for weakly-labeled real
data and unlabeled real data. To use the synthetic data, we use do-
main adaptation method, which is based on metric learning [5]. We
also adopts a sound event detection branch (SEDB) [6] to make
full use of all three kinds of strong labels, namely pseudo strong
labels of the unlabeled and weakly-labeled real data and strong la-
bels of the synthetic data. In addition, in order to balance the cate-
gories of samples, we adopts focal loss [7] as the loss function of the
SEDB. The focal loss enables the model to focus more on difficult-
to-classify samples during training. By reducing the weight of a
large number of easy-to-classify negative samples, it helps the fea-
ture encoder to model the feature space more effectively. Finally,
we use the tag-conditioned CNN model to conduct final sound event
prediction. By using the method mentioned above, the system gains
good performance.

2. METHOD

2.1. Overview of MLFL

As shown in Figure 1, The MLFL model adopts three branches.
The first branch is the embedding-level attention pooling branch.
The second branch is the sound event detection branch which uses
the focal loss as the loss function. The third branch is the domain
adaptation branch which use metric learning by inter-frame distance
contrastive loss to conduct domain adaptation.
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Figure 1: Overview of the MLFL

2.2. Embedding-level pooling

The embedding-level pooling branch is based on the multiple in-
stance learning framework. It applies the embedding-level pooling
strategy and use the attention pooling method. The implementation
of the embedding-level pooling in MLFL model is same with the
system that Lin et al. proposed in [3], which employs the special-
ized decision surface for inference.

2.3. Domain adaptation based on inter-frame distance loss

The reason for applying domain adaptation based on inter-frame
distance loss is to make full use of data in different scenarios to
achieve the purpose of improving the performance and adaptability
of the algorithm. The real data and synthetic data are mapped to
the embedding for domain adaptation through the common feature
encoder and the domain adaptation branch. Then, the frame-level
feature embeddings of real data and synthetic data are paired by
one-to-one correspondence, and domain adaptation based on inter-
frame distance contrastive (IFDC) loss is applied. The IFDC loss
calculates the difference in the distribution of data feature embed-
ding in two different scenarios. Between the synthetic data and
the real data, it makes the distance of the frame-level feature em-
beddings with the same category closer, and the distance of the
frame-level feature embeddings with different categories further.
The implementation of domain adaptation branch is a dense projec-
tion layer. The input of this layer is frame-level feature embedding,
and the output is domain embedding representation.More details of
the method can be found in [5]

2.4. The sound event detection branch with focal loss

To make better use of the strong labels, including pseudo strong la-
bels of the unlabeled and weakly-labeled data and strong labels of
the synthetic data, we also added a sound event detection branch
(SEDB). For the SEDB, we use the focal loss function to measure

the contribution of hard-to-classify and easy-to-classify samples to
the total loss. This function reduces the weight of easy-to-classify
samples, so that the model focuses more on difficult-to-classify
samples during training, and quickly achieves the purpose of sam-
ple balance. For all training data, the strong labels or pseudo strong
labels are used to train the SEDB, and the output of the SEDB is the
probability of each frame.

2.5. The tag-conditioned CNN

We use the tag-conditioned CNN module to help us complete the
final predicting work of the system. For training this module, we use
the log-mel spectrogrm and audio-tags output by the MLFL as input
and use the strong label of synthetic data and the strong pseudo-
label of real data output by the MLFL as label. And we use it to
predict the final results by using the log-mel spectrogram and the
audio-tags output by the MLFL as input.

2.6. Data augmentation

For all training data, including weakly labeled data, unlabeled data,
and synthetic data, we use mixup method to generate augmented
data. For mixup method, it generated augmented data by getting
the weighted sum of the two pieces of data.

3. SYSTEM

3.1. System overview

We selected the four training models that performed best on the
validation set and sorted them according to the results. We adopt an
average weighting method to fuse the results generated by the four
models, the top three models, and the top two models, the results
on the validation set correspond to Result2, Result1 and Result3
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Table 1: The PSDS and event-based F1 score on validation set

Model PSDS-scenario1 PSDS-scenario2 Event-F1

Baseline 0.342 0.527 0.401
Result1 0.401 0.597 0.550
Result2 0.396 0.587 0.547
Result3 0.392 0.585 0.542
Result4 0.398 0.599 0.549

in Table 1. Finally, we also try to increase the weight of the first-
ranked model to 0.4, and the result weights of 2, 3, and 4 were all
0.2 to generate the fusion result as Result4.

3.2. Model architecture

For each single system, we use three modules which are MLFL,
FBCRNN and tag-conditioned CNN. The FBCRNN provides
strong pseudo-labels for weakly-labeled real data and unlabeled
real data to train the MLFL, and the MLFL provides audio-tags
and strong pseudo labels of weakly-labeled real data and unlabeled
real data to train the tag-conditioned CNN. And the tag-conditioned
CNN conducts final sound event detection.

4. EXPERIMENT

4.1. Experimental setup

The training set of our SED system contains a weakly labeled train-
ing set (1578 clips), an unlabeled training set (14412 clips), and a
synthetic strong labeled set (10,000 clips). The verification set con-
tains 1211 strongly marked clips. All detection results are evaluated
using the poly-phonic sound event detection scores (PSDS), which
is calculated on the real recordings in the evaluation set (the per-
formance of synthetic recordings is not considered in the indicator).
The PSDS [8] value is calculated using 50 operating points (lin-
early distributed from 0.01 to 0.99). In order to better understand
the behavior of each submission for two different scenarios that em-
phasize different system attributes,we report the PSDS results and
event-based f1 [9] results of each model.

4.2. Experimental results

The experimental results are shown in Table 1. We use the four
best-performing results for model integration. The best sys achieves
a PSDS-scenario1 of 0.401 and a PSDS-scenario2 of 0.597 on the
validation set, and achieved an F1 score of 0.55.

5. CONCLUSIONS

This article presents the system we submitted to DCASE 2021 Task
4. The system is based on the model which includes three mod-
ules: FBCRNN, MLFL and tag-conditioned CNN. For the main
part MLFL, we use a weakly-supervised learning framework, with
embedding-level attention pooling module. We also uses the mean-
teacher architecture and strong pesudo labels for semi-supervised
learning. To better use the synthetic data, we use metric learning
by inter-frame distance contrastive loss to conduct domain adap-
tation. In addition, the sound detection branch with focal loss is
added and retains more valuable feature information by using the
strong labels of the data, of which the strong pesudo labels of real

data (weakly-labeled and unlabeled) is provided by FBCRNN. Fi-
nally, we use tag-conditioned CNN to conduct prediction. We focus
on the shortcomings of the SED task in different aspects, combines
the solutions into the system, and obtained competitive results.
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