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ABSTRACT

In this report, we present our submission systems to TASK1B of
the DCASE2021 Challenge. We submit a total of four systems:
one purely audio-based and three multimodal variants of the same
architecture. The main module consists of the WaveTransformer ar-
chitecture, which was recently introduced for automatic audio cap-
tioning (AAC). We first adapt the architecture to the task of acoustic
scene classification (ASC), and then extend it to handle multimodal
signals by globally conditioning all layers on multimodal OpenL3
embeddings. As data augmentation, we apply time- and frequency-
bin masking, as well as random cropping. Our best-effort system
achieves a log-loss of 0.568 and an accuracy of 79.5%.

Index Terms— audio-visual scene classification, multimodal
fusion, DCASE Challenge

1. INTRODUCTION

Obtaining an understanding of the acoustic scene has many real-
world benefits, ranging from security [1] to workplace wellbe-
ing [2]. However, accurate recognition of a given acoustic scene
still presents a difficult challenge, in particular for closely-related
classes. As changes to the underlying environment naturally af-
fect both the auditory and the visual information streams, utilising
multimodal information is an obvious research direction to solve
this problem, and such approaches are recently becoming more
popular [3, 4]. This general trend towards multimodal approaches
has proven effective in related areas which were traditionally han-
dled as unimodal as well. Speech enhancement, for example, can
benefit from multimodal information [5], e. g., recognition of lip
movement [6]. Such previous examples demonstrate that multi-
modal methods have great potential in improving scene understand-
ing when information from all modalities is simultaneously present.

The recently released TAU Urban Audio-Visual Scenes 2021
dataset [7] constitutes an intriguing new benchmark allowing for
the development of novel approaches to scene understanding. In
this report, we outline our method, which builds on the WaveTrans-
former (WT) architecture [8] and adds multimodal information us-
ing OpenL3 embeddings [9, 10], which were found to be very ef-
fective for this task in the challenge baseline [7].

2. ARCHITECTURE

Our architecture is an extension of WT [8], an encoder-decoder
based architecture recently introduced for the task of AAC [11].
As the AAC task requires the generation of a sequence of words
for each audio segment, we had to adapt the decoder to work for
the audio-visual scene classification (AVSC) case, which only re-
quires the prediction of a single label. Additionally, as the input to
the WT encoder was originally developed for audio, we extend it
to handle multimodal information. In the following subsections, we
present the unimodal architecture and its multimodal extension. An
overview of WT is presented in Figure 1.

2.1. Unimodal architecture

In the unimodal case, the input to WT is a sequence of T feature
vectors with Fa features, XXXa ∈ RT×Fa . WT can be conceptually
broken down into the following jointly-learnt processes:

• a dual-branch encoder, consisting of:

• Etf, a time-frequency (TF) based encoder which jointly
processes both the feature and the time dimension

• Etemp, a WaveNet-like encoder which operates only on the
time dimension

• Emerge, a 2D-CNN which processes the concatenated out-
put of the two branches to produce one final output

• a transformer-based decoder, Td

• temporal average pooling
• Ccl, a final output classification layer.

Etemp and Etf both accept XXXa as input. Etemp, following the
WaveNet architecture [12], operates over the time dimension and
processes the input sequentially. In the present study, we make use
of non-causal convolutions, as the task of AVSC does not require us
to preserve temporal causality. Our non-causal convolutions consist
of Ntemp wave-blocks. Each wave-block consists of seven 1D con-
volutional layers denoted by 1D-CNNt

ntemp , with t = 1, . . . , 7 and
ntemp = 1, . . . , Ntemp. Each 1D-CNNt

ntemp consists of two convolu-
tional residual blocks using the gated activation unit non-linearity of
the original WaveNet [12]. The output of the entire 1D-CNNt

ntemp is
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Figure 1: The proposed multimodal approach. OpenL3 embeddings
(a) globally condition the encoder of WT (b). The output of the en-
coder is passed to the WT decoder, then a temporal average pooling
layer, and finally to a classification layer. The unimodal architecture
is identical without the multimodal conditioning part (a).

passed through batch normalization (BN) and a rectified linear unit
(ReLU) activation. The output HHHntemp of the ntemp-th convolution
block is computed according to

AAAntemp =1D-CNN1
ntemp(HHHntemp−1), (1)

BBBntemp =tanh(1D-CNN2
ntemp(AAAntemp))�

σ(1D-CNN3
ntemp(AAAntemp)), (2)

CCCntemp =1D-CNN4
ntemp(BBBntemp) +AAAntemp , (3)

DDDntemp =tanh(1D-CNN5
ntemp(CCCntemp))�

σ(1D-CNN6
ntemp(CCCntemp)), (4)

EEEntemp =1D-CNN7
ntemp(DDDntemp) +CCCntemp , and (5)

HHHntemp =ReLU(BNntemp(EEEntemp)) +HHHntemp−1, (6)

where σ is the sigmoid non-linearity, � indicates the Hadamard
product, HHHntemp ∈ RT ′

ntemp
×Mntemp , and Mntemp are the amount of

output channels of the 1D-CNN7
ntemp .

Etf is made of Ntf 2D convolution blocks based on the
depth wise separable variant of convolutional neural networks
(CNNs) [13] which was introduced for the task of sound event de-
tection (SED) in [14]. Each convolution block in Etf consists of
a cross-channel CNN, S-CNNntf , a leaky ReLU (LU) activation,
and a pointwise convolution CNN, P-CNNntf , followed by a ReLU,
a BN, max-pooling process (MPntf ) operating over the feature di-
mension, and dropout (DRntf ) with a probability of 0.2. S-CNNntf

has a kernel size of 5 × 5, with unit stride and a zero padding of 2
frames, and its goal is to learn TF patterns from each channel sepa-
rately. P-CNNntf operates on all channels of its input and learns to
combine their information, using a 3× 3 kernel with unit stride and
a zero padding of 2. The output of Etf is computed as

AAAntf = P-CNNntf(BNntf(LU(S-CNN(HHHntf−1)))) and (7)
HHHntf = DRntf(MPntf(BNntf(ReLU(AAAntf)))), (8)

whereHHHntf ∈ RMntf×T ′
ntf
×F ′

ntf , where Mntf are the amount of out-
put channels of the ntf-th 2D CNN block. As Etemp and Etf are de-
signed to leave the sequence length of its output equal to its input,
it follows that T ′Ntemp = T ′Ntf

= T .

Subsequently,HHHNtemp is transformed to 1×T ′Ntemp ×MNtemp di-
mensions, and HHHNtf to MNtf × T

′
Ntf
× F ′Ntf

, with MNtemp = F ′Ntf
.

Then, HHHNtemp and HHHNtf are concatenated in their first dimension,
resulting to HHHmerge ∈ R(MNtf

+1)×T×MNtemp . HHHmerge is given as an
input to Emerge, which consists of a 2D convolution with a single
output feature map, followed by a linear layer. The convolution
layer has a kernel size of 5 × 5, unit stride and dilation, and a zero
padding of 2, whereas the linear layer does not change the dimen-
sionality of its input. This results in a final sequence of feature
vectorZZZenc ∈ RT×F ′

merge .
The output of the encoderZZZenc is passed to the Transformer de-

coder [15] shown in Figure 1. The decoder architecture follows the
implementation of the original Transformer [15], where a series Nd

of blocks learns to attend to the encoder output ZZZenc. That is, each
block accepts as input the output of the previous block and outputs a
key value to attend toZZZenc. The first block is initialised withZZZenc

as input. Each block is made of two multi-head self-attention layers
with Natt attention heads, and a feed-forward layer, all followed by
layer normalisation and residual connections. ZZZenc is thus passed
through a series of blocks to produce ZZZdec ∈ RT×F ′

. The se-
quence is then averaged over the time dimension, and passed to a
final (linear) classification layer which computes the output class
probabilities.

Similar to the original architecture [8], the hyperparameters of
the unimodal approach are set to Ntemp = 4, Ntf = 3, Nd = 3,
Natt = 4.

2.2. Multimodal encoders

In the multimodal setting, we add additional information to the
encoder, as shown in Figure 1. The multimodal features, XXXm ∈
R1×Fm are assumed to be of unit length and dimensionality Fm,
thus encapsulating aggregated information over the entire sequence
length and used to globally condition the main network. The in-
tuition behind the global conditioning of a network operating on
short-time features, e. g., spectrograms, is that a network trying to
learn both long- and short-term information from a series of such
features can benefit from information about the overall context. Dif-
ferent conditioning mechanisms have been explored in several fields
in the past, e. g., speech synthesis [12], speech enhancement [16],
and style conversion [17]. In a nutshell, all these approaches mod-
ulate the outputs of several layers in a deep neural network (DNN)
by using a single fixed-length vector to modify all elements of a
multidimensional tensor (the output of a given layer) across one di-
mension.

We use XXXm to condition both Etemp and Etf. For Etf, we al-
ways use the same conditioning mechanism, which has been found
to work well for convolutional networks operating on TF represen-
tations [16]. This mechanism works by adding an extra bias to each
layer of every ntf block:

VVV ntf = FFNntf(XXXm) and (9)

HHH ′ntf =HHHntf + VVV ntf , (10)

where XXXm is first projected to the appropriate dimension for each
block using a linear layer, and then added across all timesteps of
HHHntf . For Etemp, we evaluate three different conditioning mech-
anisms, thus presenting three variants of the multimodal WT, all
differing only in how they condition the wave-blocks of Etemp:
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Table 1: Log loss and accuracy [%] results on the DCASE2021 Task1b evaluation set.

Scene class Baseline WT
System 1

MWT-FiLM
System 2

MWT-Bias
System 3

MWT-Wave
System 4

Airport 0.963 66.8% 1.307 35.4% 0.883 71.8% 1.532 57.6% 1.452 55.6%
Bus 0.396 85.9% 0.540 82.3% 0.414 83.7% 0.275 91.3% 0.540 76.9%
Metro 0.541 80.4% 1.125 59.6% 0.670 77.1% 0.379 90.0% 0.677 75.8%
Metro station 0.565 80.8% 2.013 33.1% 0.365 88.6% 0.485 86.3% 1.219 61.6%
Park 0.710 77.2% 0.473 89.0% 0.344 87.9% 0.244 91.2% 0.748 71.6%
Public square 0.732 71.1% 1.934 34.0% 0.629 73.9% 0.593 76.4% 1.093 64.9%
Shopping mall 0.839 72.6% 0.808 74.0% 0.488 83.3% 0.469 81.6% 0.296 89.4%
Street pedestrian 0.877 72.7% 1.219 56.3% 0.786 71.3% 1.045 63.1% 1.113 61.5%
Street traffic 0.296 89.6% 0.644 82.1% 0.450 85.5% 0.775 78.1% 0.359 88.8%
Tram 0.659 73.1% 1.498 40.1% 0.740 68.3% 1.512 38.3% 0.524 77.4%

Average 0.658 77.0% 1.153 59.4% 0.568 79.5% 0.704 76.2% 0.796 72.6%

• MWT-FiLM, using feature-wise linear modulation (FiLM)
conditioning [17]

• MWT-Bias, operating similar to FiLM, but only modulating
the output bias [16]

• MWT-Wave, applying the global conditioning approach de-
scribed in [12].

For all approaches, XXXm is first projected to the appropriate di-
mension using a linear layer, as

VVV ntemp = FFNntemp(XXXm), (11)

where FFNntemp is the above-mentioned linear layer.
MWT-FiLM applies FiLM conditioning to the output of each

block, thus linearly modulating the feature maps with a constant
scale and bias factor. This is implemented by adding an extra equa-
tion to Equations (1) to (5) that modifies their output as follows:

HHH ′ntemp =WWW s
ntempHHHntemp +WWW b

ntemp , (12)

whereWWW s
ntemp andWWW b

ntemp are the scale and bias terms of the FiLM
layer, respectively, and are both fixed-sized vectors of dimensional-
ity equal to the number of channels in each wave-block. In practice,
they are both created as a single vector using the linear layer de-
scribed by Equation (11), and then split to two equally-sized ones.
The same bias and scaling factors are applied to all time-steps.

MWT-Bias instead modifies Equation (5) by adding a simple
bias term projected over all time-steps, before the application of
ReLU and BN as

QQQntemp =1D-CNN7
ntemp(DDDntemp) +CCCntemp + VVV ntemp and (13)

HHHntemp =ReLU(BNntemp(QQQntemp). (14)

Finally, MWT-Wave follows the approach outlined by Oord et
al. [12] for conditioning a WaveNet architecture, thus substituting
Equation (2) and Equation (4) with their multimodal equivalents as:

BBBntemp =tanh(1D-CNN2
ntemp(AAAntemp) + VVV ntemp)�

σ(1D-CNN3
ntemp(AAAntemp) + VVV ntemp) and (15)

DDDntemp =tanh(1D-CNN5
ntemp(CCCntemp) + VVV ntemp)�

σ(1D-CNN6
ntemp(CCCntemp) + VVV ntemp). (16)

3. DATASET

The dataset used in this work is the official DCASE2021 audio-
visual scene recognition dataset [7], which contains data for 10
scenes spread across different locations in 10 cities. As validation
split, we use the one suggested in the challenge baseline [18]. Re-
sults are reported on the official evaluation split of the development
dataset.

3.1. Features

All models are trained on 1 s of audio data. During training, the
audio files, each of a 10 s duration, are randomly cropped to a fixed
duration of 1 s. During evaluation on the development set, the val-
idation files also have a duration of 10 s. As specified by the chal-
lenge protocol [18], we evaluate and report results for each 1 s of
audio.

As audio features, we use log-Mel spectrograms extracted with
128 bins, a window size of 32ms, and a hop size of 10ms. As the
dataset contains stereo recordings, we average the spectral magni-
tudes of both channels to get the final input to the network. During
the training phase, we apply random time- and frequency-bin mask-
ing [19]. For each batch, we randomly pick a time mask of size 20
and a frequency mask of size 16 to be applied uniformly over all
segments in it.

For multimodal conditioning, we use both audio and video em-
beddings extracted with OpenL3 [9, 10]1. Same as the baseline [18],
we use the model trained for environmental recognition with 256
mels for audio extraction, and extract embeddings with a hop size
of 10ms. For each 1 s we average the 10 corresponding embeddings
to provide one global context vector.

4. EXPERIMENTS

All models are trained for 60 epochs with a categorical cross-
entropy loss, and the best model is selected based on the validation
set log-loss. We use a batch size of 16 and a learning rate of 0.00005
and weight decay of 0.0001 with the Adam optimiser [20]. Similar
to Tran et al. [8], we use gradient clipping such that the 2-norm of
the gradients does not exceed the value of 1.

1https://github.com/marl/openl3
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(a) Confusion matrix on the evaluation set of the DCASE2021
challenge dataset for the unimodal WaveTransformer
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Figure 2: Confusion matrices on the evaluation set of the DCASE2021 challenge dataset for the unimodal and the multimodal WaveTrans-
former with FiLM conditioning.

Table 2: Log loss results on the DCASE2021 Task1b evaluation set
when conditioning only on audio (A) or video (V) OpenL3 embed-
dings compared to using both audio and video (A+V).

Embeddings MWT-FiLM MWT-Bias MWT-Wave

A 0.887 0.961 0.927
V 1.028 0.887 0.829
A+V 0.568 0.704 0.796

Class-wise and average results for our four proposed systems,
as well as the challenge baseline [18], are presented in Table 1. We
can see that the best performing architecture is MWT-FiLM, which
outperforms the baseline with a log-loss of 0.568 and an accuracy
of 79.5%. The other two approaches, MWT-Bias and MWT-Wave,
although substantially improving upon the unimodal WT, are per-
forming worse than the baseline. Interestingly, the conditioning
mechanism proposed by the original WaveNet authors [12] is show-
ing the worst performance in this setting.

Confusion matrices for the baseline WT and MWT-FiLM are
shown in Figure 2. These show that multimodal information has not
only improved overall performance, but also helped with misclassi-
fications across similar classes. For example, the baseline architec-
ture often confuses ‘airport’ with ‘shopping mall’; this is corrected
through the use of multimodal information, though to the detriment
of ‘airport’ vs ‘metro station’. Similarly, the misclassifications be-
tween ‘bus’, ‘metro’, and ‘tram’, all belonging to the ‘public trans-
port’ category as taxonomised in TASK1 of the DCASE2020 chal-
lenge [21], have also improved. This demonstrates that multimodal
information can help disambiguate classes that are similar in one
modality.

Finally, Table 2 shows model performance when using OpenL3
embeddings from only one of the two modalities to condition Wave-
Transformer. Results are worse for all conditioning mechanisms, in-
dicating that multimodal OpenL3 embeddings contain complimen-
tary information that is necessary to get good performance. This
indicates that multimodal pre-training, where a network is trained

to jointly model two modalities [9], helps learn generalizable repre-
sentations for multimodal downstream tasks.

5. CONCLUSION

We have adapted a state-of-the-art DNN architecture to the task
of audio-visual scene recognition. Our main contribution lies in
the use of multimodal embeddings to condition the two encoding
branches, a WaveNet-like and a CNN based one, using three dif-
ferent conditioning mechanisms. Results show that the inclusion of
multimodal information is necessary to improve performance and
tell apart similar classes. In the future, we intend to explore more
advanced ways to closely couple the two modalities.
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