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ABSTRACT

This technical report describes our approaches for Task 1A (Low-
Complexity Acoustic Scene Classification with Multiple Devices)
of the DCASE 2021 Challenge. We propose a new architecture with
mobile inverted bottleneck blocks (Fused-MBConv and MBConv)
for acoustic scene classification tasks. This architecture is based on
EfficientNetV2. Our models have a very small number of parame-
ters. We also use several data augmentation techniques during the
training of models. Our best model has 62,346 non-zero parameters
and achieves a classification macro-average accuracy of 70.5% and
an average multiclass cross-entropy (log loss) of 0.848 on the devel-
opment dataset. The resulting model size is 121.8 KB (the model
parameters are quantized to float16 after the training).

Index Terms— acoustic scene classification, mobile inverted
bottleneck blocks, data augmentation techniques.

1. INTRODUCTION

In this work, we describe our approaches and systems for acoustic
scene classification (ASC) tasks. ASC is a subtask of audio pattern
recognition task and is an important topic in machine learning and
signal processing areas because audio signals can contain a lot of
rich information.

The Detection and Classification of Acoustic Scenes and Events
2021 Task 1A [1] focuses on the robustness to various devices and
low-complexity of ASC systems. This is important because, firstly,
environmental sounds are recorded on various devices, and sec-
ondly, in real life, it is necessary to efficiently process a large num-
ber of audio streams from many devices. For DCASE 2021 Task 1A
the size of the ASC system must be limited to 128 KB for the non-
zero parameters. This equals 32,768 parameters for float32 format
and equals 65,536 parameters for float16 format.

Systems with convolutional neural networks (CNNs) outper-
formed systems with another approaches for audio pattern recog-
nition tasks and are used most often [2], [3], [4], [5]. These systems
use different 2D input features such as log-mel spectrogram. Our
ASC systems also is based on CNNs.

In the work [6] (EfficientNet) was proposed convolutional neu-
ral networks scaling strategy using network width, depth, and res-
olution of input features. Using this scaling strategy, in [6] it was
demonstrated that EfficientNet models can be simply scaled, are
very efficient, and have high classification accuracy for image clas-
sification tasks. In EfficientNetV2 [7] was used an idea for replace-
ment of some MBConv [8] (main convolutional blocks in Efficient-

Net) blocks with another mobile inverted bottleneck blocks (Fused-
MBConv) [9] and were applied the most modern approaches for
image classification tasks. As a result, it was possible to achieve
better accuracy, reduce training and inference time of CNNs.

We propose a new architecture, which is based on Efficient-
NetV2 [7], with mobile inverted bottleneck blocks (Fused-MBConv
and MBConv) for very efficient ASC systems. We also apply sev-
eral augmentation techniques during training of models.

Our best system has 62,346 non-zero parameters and achieves
a classification macro-average accuracy of 70.5% and an average
multiclass cross-entropy (log loss) of 0.848 on the development
dataset. The resulting model size is 121.8 KB (the model param-
eters are quantified to float16 after the training).

2. ACOUSTIC SCENE CLASSIFICATION SYSTEM

2.1. Feature extraction

In this paper, we use log-mel spectrograms (log-mel energies) as in-
put time-frequency features to our models. For extracting log-mel
spectrograms we adopt a hop size of 690 samples and a window size
of 2760 samples (75% overlap) with the Hann window function for
the calculating of STFT (Short-Time Fourier Transform). A sam-
pling rate sr = 44100 Hz and a signals duration t = 10 seconds
are fixed for TAU Urban Acoustic Scene 2020 Mobile dataset [10]
(we do not use resampling methods).

For our ASC systems, we experiment with a different number
of mel bins M ∈ {32, 64, 128, 160}. We also determine the lower
cut-off frequency fmin = 10 Hz to remove low-frequency noise
and the upper cut-off frequency fmax = 16000 Hz to remove the
aliasing effects.

Thus, the size of input features is equal to 640×M .

2.2. Data augmentation techniques

Several data augmentation techniques are applied to prevent models
from overfitting during training:

• temporal cropping: models are used 8-second sections of
audio signals during training. Sections are cut from random
places. During evaluating full audio signals are used as input;

• SpecAgment [11];
• modified mixup [5]: this mixup takes into account the sound

pressure level of two audio signals that are mixed. We adopt
α = 0.6 for all experiments.
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Figure 1: Structure of MBConv4 [8] and Fused-MBConv4 [9]
blocks. C is the number of output channels. SE is the squeeze-
and-excitation block [12].
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Figure 2: Structure of SE block [12].

2.3. Architecture of ASC models

Our architecture of convolutional neural networks is based on Effi-
cientNetV2 [7]. EfficientNet [6] is a modern neural architecture for
efficiency models for image classification tasks. These models have
a good trade-off between computational complexity and the perfor-
mance with optimal choice of the dependence of the width of the
convolutional layers, the depth of the neural network, and the size
of the input features.

In EfficientNetV2 were added Fused-MBConv blocks [9]. In
EfficientNet only MBConv blocks [8] are used, which includes
depthwise convolutions. In EfficientNetV2 it was shown that re-
placement of some MBConv4 blocks with Fused-MBConv4 blocks
allows for increasing the performance and efficiency of models. The
comparison of MBConv4 with Fused-MBConv4 is shown in Fig. 1.

Structure of the squeeze-and-excitation block (SE) [12] is de-
scribed in Fig. 2.

Our architecture of ASC models is described in Table 1.
Batch normalization [13] (over frequency axis) is used at the

start as replacement to data standardization. We apply only two
Fused-MBConv4 blocks at the start because these blocks have a
large number of parameters for high values of C (the number of
output channels). In the table, stride sizes are described for only the
first layers in blocks (stride size is equal to 1 × 1 for other layers).
For global pooling, we use a combination of max pooling and av-

Table 1: Proposed architecture of our ASC system.

Blocks/Layers Stride Kernel Channels

BatchNorm – – 1
Conv2d 1×1 5×3 6
2 × Fused-MBConv4 2×2 3×3 12
3 ×MBConv4 2×1 3×3 18
3 ×MBConv4 2×2 3×3 24
2 ×MBConv4 2×2 3×3 30
Conv2d 1×1 1×1 100
Global pooling – – 100
Flatten – – 100
Fully connected (FC) – – -
Softmax – – -

erage pooling as in [3] to combine their advantages. After global
pooling, we use a fully connected layer (FC) and a softmax non-
linearity at the end to obtain model predictions. As an activation
function, we use the swish function [14].

It is worth noting that we adopt the optimal width of convolu-
tional layers, the number of convolutional layers (depth) per block,
stride sizes, and other hyper-parameters by many experiments. We
also select these hyper-parameters in such a way as to satisfy the
limit of 65,536 parameters. But the results of detailed enumeration
of hyper-parameters are omitted. The best values of these hyper-
parameters are described in Table 1.

3. EXPERIMENTS AND RESULTS

3.1. Training setup

Parameters of models are optimized by minimizing a categorical
cross-entropy loss with the AdamW optimizer [15] with standard
parameters and with a batch size of 64. We evaluate models using
an exponential moving average of models parameters with a decay
rate of 0.999. We also use a one-cycle learning rate policy [16] with
a max learning rate of 0.01. All models are trained for about 400
epochs (we use early stopping with max epochs of 500).

3.2. Task 1A: TAU Urban Acoustic Scene 2020 Mobile

TAU Urban Acoustic Scene 2020 Mobile dataset [10] is proposed
for systems training and evaluation in DCASE 2021 Task 1A. The
development dataset consists of 23,040 audio clips and 10 classes
of acoustic scenes. The dataset is balanced by classes.

It is worth noting that this dataset consists of audio clips which
were collected from nine devices (three real devices and six simu-
lated devices). For training and evaluation of our systems, we use
basic metadata of training/test split which was provided by orga-
nizers of the DCASE 2021 Task 1A challenge [1]. The test set is
balanced by devices (329-330 clips per device) and contains 2,970
audio clips. The test set also contains three devices (S4 S5, S6) that
do not contain in the training set.

For comparison of models, we use two official metrics – macro-
average accuracy (average of the class-wise accuracies) and macro-
average multiclass cross-entropy (log loss, average of the class-wise
log loss). All results of models for the test set of the development
dataset are represented for float16 format of parameters (quantiza-
tion of models is done using PyTorch 1.7 [17] after training and the
weights of models are converted to float16 format).
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3.3. Comparison of models with different number of mel bins

We compare the performance of models with a different number of
mel bins M ∈ {32, 64, 128, 160}. Results are shown in Table 2.

Table 2: Comparison of models with a different number of mel bins.

Mel bins Accuracy Log loss

32 bins 64.4% 1.042
64 bins 68.8% 0.932
128 bins 70.9% 0.859
160 bins 70.5% 0.848

Our best model (by a value of log loss) with 160 mel bins
achieves a macro-average accuracy of 70.5% and log loss of 0.848.
It is worth noting that the model with 64 mel bins has almost the
same performance as the model with 160 mel bins, but the model
with 64 mel bins is ≈ 2.5x faster.

3.4. Class-wise and device-wise performance of the best model

Class-wise and device-wise performance on the test set of the devel-
opment dataset of our best model (with 160 mel bins) is described
in Table 3 and Table 4, respectively.

Table 3: Class-wise performance of the best model.

Scene label Accuracy Log loss

Airport 61.5% 1.018
Bus 90.6% 0.340
Metro 71.7% 0.713
Metro station 73.4% 0.764
Park 86.2% 0.518
Public square 51.5% 1.460
Shopping mall 71.4% 0.845
Street, pedestrian 32.3% 1.812
Street, traffic 87.5% 0.421
Tram 78.7% 0.592

Average 70.5% 0.848

Table 4: Device-wise performance of the best model.

Device Accuracy Log loss

A 78.5% 0.627
B 72.3% 0.828
C 77.5% 0.699
S1 68.5% 0.886
S2 67.0% 0.914
S3 69.7% 0.831

S4 68.5% 0.949
S5 67.6% 0.907
S6 64.8% 0.995

Average 70.5% 0.848

It is worth noting that there is enough difference for class-wise
performance for various acoustic scene classes. For example, our

model has 90.6% macro-average accuracy for the ”bus” class and
32.3% macro-average accuracy for the ”street, pedestrian” class.

There is a slight difference in the device-wise performance for
various devices. For unseen devices S4, S5, and S6 our model has
almost the same accuracy as for seen devices S1, S2, S3. Thus, our
model is quite robust to various devices, which is one of the main
goals of DCASE 2021 Task 1A.

3.5. Model size

In this subsection, we provide full information about the model size.
Our model has a large number of layers; therefore, we describe the
model size using two tables.

A full description of the layers of Fused-MBConv4 and MB-
Conv4 blocks and the formulas for calculating the number of pa-
rameters for each layer are presented in Table 5.

Table 5: The number of parameters of MBConv4(I, O) and Fused-
MBConv4(I, O) blocks.

Layer MBConv4 Fused-MBConv4

Conv2dExpand 4·I2 36·I2
BatchNorm + swish 8·I 8·I
Conv2dDepthwise 36·I –
BatchNorm + swish 8·I –
Global pooling 0 0
Conv2dSEReduce (1 + 4·I) · [0.25 · I] (1 + 4·I) · [0.25 · I]
Swish 0 0
Conv2dSEExpand 4·I · (1 + [0.25 · I]) 4·I(1 + [0.25 · I])
Conv2dReduce 4·I ·O 4·I ·O
BatchNorm2d 2·O 2·O
Conv2dShortcut H(I,O) H(I,O)

In the table I is the number of input channels, O is the num-
ber of output channels, [x] is the integer part of x and the function
H(x, y) is calculated by the formula:

H(x, y) =

{
x · y x 6= y

0 x = y
(1)

Hence, the total number of parameters of MBConv4 block is
calculated by the formula:

N(I,O) = 4 · I · (I +O + 2 · [0.25 · I] + 14)+

+2 · I + [0.25 · I] +H(I,O)
(2)

And the number of parameters of Fused-MBConv4 block:

N(I,O) = 4 · I · (9 · I +O + 2 · [0.25 · I] + 3)+

+2 · I + [0.25 · I] +H(I,O)
(3)

In Table 6 we provide the description of the model structure and
the number of parameters corresponding to its size in KB. In order
not to overload the table there is no column ”non-zero parameters”
because the number of non-zero parameters is equal to the number
of parameters (we do not use pruning methods). We also do not de-
scribe column ”data type” because the data type of each parameter
is float16 during evaluation (the model parameters are quantized to
float16 after the training).

The total size of our best model (with 160 mel bins) is 121.8
KB, and the model is consistent with the competition requirements.
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Table 6: Model size calculation (for 160 mel bins). Size of param-
eters is described for float16 format.

Block/Layer Parameters Size

BatchNorm 320 640 B
Conv2d 96 192 B
BatchNorm + swish 12 24 B
Fused-MBConv4(6, 12) 1,801 3,602 B
Fused-MBConv4(12, 12) 6,219 1,2438 B
MBConv4(12, 18) 2,655 5,310 B
MBConv4(18, 18) 4,216 8,432 B
MBConv4(18, 18) 4,216 8,432 B
MBConv4(18, 24) 5,092 10,184 B
MBConv4(24, 24) 7,158 14,316 B
MBConv4(24, 24) 7,158 14,316 B
MBConv4(24, 30) 8,466 16,932 B
MBConv4(30, 30) 10,627 21,254 B
Conv2d 3,100 6,200 B
BatchNorm + swish 200 400 B
Global pooling 0 0 B
Flatten 0 0 B
Fully connecte (FC) 1010 2,020 B
Softmax 0 0 B

Total 62,346 121.8 KB

3.6. Results

Table 7 shows results of our systems with different submission ID
and the comparison with the baseline system [18] on the official
development dataset [1] [10].

• submission 1: the model with 32 mel bins;
• submission 2: the model with 64 mel bins;
• submission 3: the model with 128 mel bins;
• submission 4: the model with 160 mel bins;

Table 7: Results for Task 1A on official development data.
Sub ID Mel bins Accuracy Log loss Model size

baseline [18] 40 47.7% 1.473 90.3 KB
1 32 64.4% 1.042 121.3 KB
2 64 68.8% 0.932 121.4 KB
3 128 70.9% 0.859 121.6 KB
4 160 70.5% 0.848 121.8 KB

Our ASC systems have significantly higher performance on the
development dataset than the baseline system [18].

4. CONCLUSION

In this work, we have proposed and described a new architecture
of convolutional neural networks with mobile inverted bottleneck
blocks for acoustic scene classification tasks. Our best ASC sys-
tem has a very small number of non-zero parameters and has sig-
nificantly higher performance on the official development dataset
than the baseline system. Our best system achieves a classification
macro-average accuracy of 70.5%, log loss of 0.848, and has 62,346
non-zero parameters.
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