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ABSTRACT
In this technical report, we describe our submission system for
DCASE 2021 Task4: sound event detection and separation in do-
mestic environments. The proposed system is based on mean-
teacher framework of semi-supervised learning and neural networks
of CRNN and CNN-Transformer. We employ consistency training
of interpolation (ICT), shift (SCT), and clip-level (CCT) to enhance
the generalization and representation. A multiscale CNN block is
applied to extract various features to mitigate the influence of the
event length diversity for the network. An efficient channel at-
tention network (ECA-Net) and exponential softmax pooling en-
able the model to obtain definite sound event predictions. To fur-
ther improve the performance, we use data augmentation including
mixup, time shift, and time-frequency masks. Our ensemble sys-
tem achieves the PSDS-scenario1 of 40.72% and PSDS-scenario2
of 80.80% on the validation set, significantly outperforming that of
the baseline score of 34.2% and 52.7%, respectively.

Index Terms— sound event detection, CRNN, transformer,
semi-supervised learning, consistency training, mean-teacher
model, channel attention, pooling function

1. INTRODUCTION

This technical report describes our submission system for DCASE
2021 Task4: Sound Event Detection (SED) and separation in do-
mestic environments. The goal of this task is to build a SED system
to detect sound events and time boundaries in Scenario1 (react fast)
and Scenario2 (avoid class confusion) by using a large amount of
weakly labeled and unlabeled data. In this task, we employ two
neural networks and multiple strategies as below:

• CRNN [1] and CNN-Transformer model [2, 3],
• multiscale CNN blocks [4] to extract various features,
• consistency training of interpolation (ICT) [5], shift (SCT) [6],

and clip-level (CCT) [7] to enhance model robustness,
• efficient channel attention network (ECA-Net) [8] to pay more

attention to important features,
• exponential softmax pooling function [9] to let the weight of

frame-level probability be exponential instead of learning.

To further improve the performance, we implement:

• data augmentation methods including mixup [10], time shift,
and time-frequency masks [11] to increase data diversity,

• adaptive post-processing to effectively smooth network output,
• score fusion to ensemble the advantages of each single system.

Figure 1: The proposed sound event detection system structure.

2. PROPOSED METHODS

2.1. Network architecture

2.1.1. CRNN

The convolutional recurrent neural network (CRNN) is similar to
DCASE 2021 Task4 baseline architecture, which consists of 7 lay-
ers of CNN blocks and 2 layers of bidirectional gated recurrent
unit (GRU), as shown in 2(a). A CNN block contains the con-
volutional layer, batch normalization (BN), Rectified Linear Unit
(ReLU) activation, and average-pooling (AvgPool) layer. The input
mel-spectrogram passes learnable convolution kernels and output
the feature maps. BN and ReLU activation are intended to speed up
and stabilize training. AvgPool calculates the average for each patch
of the feature map and downsamples feature dimensions along both
the time axis and the frequency axis. Then, RNN layers capture the
long-term contextual information. Finally, the SED classifier con-
sists of a fully connected layer and sigmoid function to discriminate
the sound event types.

2.1.2. CNN-Transformer

Transformer [12] allows parallel computation and achieves state-of-
the-art performance on many tasks [13, 14, 15, 16, 17]. Hence, we
implement CNN-Transformer network [2, 3] for SED, as shown in
Figure 2(b). Positional encoding is used to enhance the output fea-
tures from the CNN blocks with order information before the trans-
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(a) CRNN (b) CNN-Transformer
(c) Multiscale CNN block

(d) ECA-Net

Figure 2: The network structure of CRNN, CNN-Transformer, multiscale CNN block, and efficient channel attention network (ECA-Net).

former blocks. A transformer encoder block has layer normaliza-
tion, multi-head attention, and feed-forward layer. The multi-head
attention estimates the similarity between query and key, and ex-
tracts value as a weighted sum. The mechanism allows the model to
jointly pay attention to the information from different positions. The
fully-connected feed-forward layer with ReLU activation is applied
to each position identically. For regularization, we adopt pre-layer
normalization (Pre-LN) [18] and residual connection.

2.1.3. Multiscale CNN

From strongly labeled training data, we estimate duration of each
sound event as below. 0∼2s: alarm/bell/ringing, cat,
dishes, dog, and speech. 4∼6s: blender and running
water. 7∼10s: electric shaver/toothbrush, frying,
and vacuum cleaner. The length of sound events is various and
cause the model to work with inconsistent accuracy for the event of
different scales. Thus, we refer to [4] to apply different kernel sizes
to build a multiscale CNN block to capture the richer features, as
Figure 2(c). A multiscale CNN block contains the kernel size of
1x1, 3x3, 5x5 and uses addition to integrate features of different
scales.

2.1.4. Efficient Channel Attention

The effect of the acoustic feature extraction largely determines the
model ability to predict different sound events and affects the final
classification result. However, the attention mechanism can make
the model pay more attention to areas which may be important
features, and improve the model ability to distinguish features of
sound events. We combine the efficient channel attention network
(ECA-Net) [8] in multiscale CNN blocks before adding features of
different scales, as shown in Figure 2(c). ECA-Net is composed
of adaptive average pooling (A-AvgPool) layer, 1D convolutional
(1D-CNN) layer, and sigmoid function, as shown in Figure 2(d).

A-Avgpool is applied along the channel axis and 1D-CNN calcu-
late the attention of each channel. The kernel size of 1D-CNN is
defined by

k =

∣∣∣∣ log2(C) + b

γ

∣∣∣∣
odd

(1)

where k and C denote kernel size and channel dimensional, γ and b
are set to 2. Clearly, high-dimensional channels have longer range
interaction, vice versa.

2.1.5. Pooling Function

[9] compared five different types of pooling functions in the multi-
ple instance learning (MIL) framework for SED, namely attention
pooling, max pooling, average pooling, linear softmax, and expo-
nential softmax. The attention pooling estimates the weights for
each frame are learned with a dense layer in the network. The max
pooling simply take the large probability in all frames. The average
pooling assigns an equal weight for all frames. The linear softmax
assigns weights equal to the frame-level probability, while the expo-
nential softmax assigns a weight of exponential to the frame-level
probability. Baseline uses attention pooling to transform frame-
level into clip-level. However, with different application scenarios,
there should be a relatively appropriate pooling function to replace.

2.2. Semi-Supervised Learning

In this work, we employ the mean-teacher framework [19] for semi-
supervised learning, and use the Mean Square Error (MSE) loss for
the consistency cost. The MSE loss function is defined by

MSE(y, ŷ) = (y − ŷ)2 (2)

where y and ŷ denote the target and the prediction, respectively.
Following, we propose multiple consistency criteria to regular-
ize/direct how the SED system should learn from unlabeled or
weakly-labeled data.
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2.2.1. Interpolation Consistency Training

Recently, the interpolation consistency training (ICT) [5] has been
proposed for semi-supervised learning. ICT encourages the pre-
diction at an interpolation of unlabeled data points to be consistent
with the interpolation of the prediction at these data points. Learn-
ing from interpolation samples can help the model discriminate am-
biguous samples to improve the generalization ability. We define
the ICT loss function by

LICT = MSE(Sθ(λdi + (1− λ)dj),

λTθ′(di) + (1− λ)Tθ′(dj))
(3)

where Sθ and Tθ′ denote a student model and a teacher model, di
and dj denote data points, and λ is randomly sampled from a Beta
distribution.

2.2.2. Shift Consistency Training

Inspired by ICT, we consider time-shift as another way to enhance
consistency which is similar to proposed by [6], called shift consis-
tency training (SCT). We define the SCT loss function by

LSCT = MSE(Sθ(shift(dk)), shift(Tθ′(dk))) (4)

SCT encourages the prediction of time-shift input to be consistent
with time-shift prediction. In theory, it allows the model to learn
shift-invariance and temporal localization of sound events.

2.2.3. Clip-level Consistency Training

In addition to ICT and SCT, we also implement clip-level consis-
tency training (CCT) [7]. We define the CCT loss function by

LCCT = MSE(NN(dx),ClipLevel(fx)) (5)

where NN(dx) is the weighted average pooling of the CRNN
or CNN-Transformer frame-level network output of data dx, and
ClipLevel(fx) is obtained by feeding the feature map fx of the fi-
nal CNN block to a clip-level classifier. As shown in Figure, the
clip-level classifier consists of 3 extra multiscale CNN blocks, a
global average pooling, and a fully connected layer.

2.2.4. Overall Consistency Training

In summary, the overall loss is

L = L0 + LICT + LSCT + LCCT (6)

where L0 denotes the loss without the proposed consistency.

2.3. Data Augmentation

• Mixup [10]. It mixes two randomly selected samples from the
original training data and uses λ sampled from Beta distribu-
tion to control the strength of interpolation between two sam-
ples. The linear interpolation technique can enhance the data
diversity and robustness of the network.

• Shift [11]. It shifts a feature sequence on the time axis, and
overrun frames are concatenated with the opposite side of the
sequence. The usage helps the network learn temporal local-
ization information of the sound event.

• Masks [11]. It creates artificial data by masking a block
of consecutive time steps or frequency channels on the mel-
spectrogram instead of the raw audio. It can help the network
learn the beneficial features to be robust to partial loss of spec-
tral information or speech segments.

2.4. Adaptive Post-Processing

The frame-level network output is further post-processed to become
the final output. First, thresholding operation converts probabilistic
outputs to binary outputs. Then, the binary output sequences are
further smoothed by median filters to avoid spurious detection. As
sound classes may have varying temporal characteristics, we un-
tie median filter sizes in the post-processing of the different sound
classes. Following [2], we search the median filter size from 1 to 51
in increments of 1 with data from DCASE 2021 Task 4.

2.5. Score Fusion

To improve generalization performance, we perform score fusion as
a model ensemble technique. We utilize different data augmentation
methods to build several single systems based on CRNN and CNN-
Transformer models with different strategies. Then, we average the
raw posterior outputs of the multiple models and perform adaptive
post-processing to smooth the network output.

3. EXPERIMENTS

3.1. Dataset and Signal Preprocessing

The DESED dataset of DCASE 20201 Task 4 is comprised of 10-
sec audio clips and 10 classes of sound events. The data are in
two domains: real data (44.1kHz) extracted from AudioSet [20] and
synthetic data (16kHz) generated by Scaper [21]. Each audio clip
can be strongly labeled with the sound events and their time bound-
aries annotated, weakly labeled with only the sound events anno-
tated, or unlabeled without any annotation. All dataset is divided
into 4 subsets: weakly labeled (1,578 clips), unlabeled (14,412
clips), strongly labeled (10,000 clips), and validation set (1,168
clips). Audio signals are resampled to 16kHz sampling rate at first
by librosa tool [22]. From the resampled signals, 128-channel mel-
spectrogram is extracted with window size of 2048 and hop size of
256. The mel-spectrogram of a clip is normalized to zero mean and
unit variance. Consequently, the size of the input acoustic features
to the deep neural network is 626× 128.

3.2. Network Setting

The 7 layers of multiscale CNN blocks have the number of fil-
ters:[16, 32, 64, 128, 128, 128, 128] and pooling size:[[2, 2], [2,
2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]. The 6 layers of transformer
encoder blocks have multi-head attention with 256 units and 8 heads
and a feed-forward layer with 2048 units. For ICT and mixup aug-
mentation, the parameter λ is sampled from Beta(α, α) and α from
0.1 to 0.7 in increments of 0.1. For SCT and shift augmentation, we
choose the amount of time-shift by sampling from a normal distri-
bution with a zero mean and a standard deviation of 90. For masks
augmentation, the size of time-mask and frequency-mask are sam-
pled from a uniform distribution from 0 to 30 and 40, respectively.
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4. EVALUATION RESULTS

The evaluation of DCASE 2021 Task4 contains PSDS-scenario
1 for time boundaries accuracy and PSDS-scenario 2 for sound
class accuracy. From Table 1, whether neural network is CRNN
or CNN-Transformer, the incorporation of ICT, SCT, and CCT
has significantly achievement on two scenarios. The multiple
consistency training strategies on CRNN improved PSDS 1 from
34.04% to 37.86%, PSDS 2 from 53.30% to 60.87%, and on CNN-
Transformer, PSDS 1 from 33.46% to 37.33%, PSDS 2 ranges from
48.77% to 55.87%. From Table 2 and Table 3, we found that mul-
tiscale CNN blocks and ECA-Net can help the model obtain spe-
cific features of sound events so that CRNN can reach 65.54% and
CNN-Transformer can reach 61.10% for PSDS 2. From Table 4,
both types of neural networks are best when using attention pool-
ing at PSDS 1 and using exponential softmax at PSDS 2, espe-
cially CRNN has a significant improvement. We consider that at-
tention pooling learns weights from the network so that they have a
time series relationship. Therefore, it has better performance under
stricter evaluation standards with time requirements. Exponential
softmax uses exponentials as weights to conform to monotonicity.
The higher the prediction probability of the time point, the higher
the weight, so the performance is better under the stricter evaluation
criteria for the correctness of the category.

We combine two models with proposed strategies to build three
single systems so that PSDS 1 and PSDS 2 can have the best per-
formance: (A) CNN-Transformer + ICT, SCT, CCT, Multiscale, (B)
CRNN + ICT, SCT, CCT, Multiscale, (C) CRNN + ICT, SCT, CCT,
Multiscale, ECA-Net, Exponential Softmax. We apply different data
augmentation methods to build several systems for fusion based on
the three single systems above. From Table 5, our ensemble systems
can achieve 40.72% of PSDS 1 and 80.80% of PSDS 2.

Table 1: Results of different consistency training on CRNN and
CNN-Transformer.

Consistency Training Model PSDS 1 PSDS 2

- CRNN 34.04% 53.30%
CNN-Transformer 33.46% 48.77%

ICT CRNN 36.38% 55.87%
CNN-Transformer 33.39% 50.07%

ICT, SCT CRNN 37.86% 59.47%
CNN-Transformer 35.61% 52.01%

ICT, SCT, CCT CRNN 37.64% 60.87%
CNN-Transformer 37.33% 55.87%

Table 2: Results of different CNN blocks on CRNN and CNN-
Transformer with ICT, SCT, and CCT.

CNN blocks Model PSDS 1 PSDS 2

3x3 CNN CRNN 37.64% 60.87%
CNN-Transformer 37.33% 55.87%

Multiscale CNN CRNN 36.70% 63.50%
CNN-Transformer 34.75% 61.10%

Table 3: Results of ECA-Net on CRNN and CNN-Transformer with
ICT, SCT, CCT, and Multiscale CNN.

Efficient Channel Attention Model PSDS 1 PSDS 2

- CRNN 36.70% 63.50%
CNN-Transformer 34.75% 61.10%

ECA-Net CRNN 34.71% 65.54%
CNN-Transformer 35.13% 60.27%

Table 4: Results of different pooling function on CRNN and CNN-
Transformer with ICT, SCT, CCT, and Multiscale CNN.

Pooling Function Model PSDS 1 PSDS 2

Attention CRNN 36.70% 63.50%
CNN-Transformer 34.75% 61.10%

Max pooling CRNN 36.10% 64.59%
CNN-Transformer 31.73% 59.77%

Average pooling CRNN 5.34% 73.95%
CNN-Transformer 4.53% 60.41%

Linear Softmax CRNN 26.75% 60.17%
CNN-Transformer 4.21% 60.57%

Exponential Softmax CRNN 5.82% 75.35%
CNN-Transformer 4.13% 61.31%

Table 5: Fusion results of different data augmentation on CRNN
and CNN-Transformer with different strategies above. α means the
parameter of beta distribution.

# Model Strategies Data Augmentation PSDS 1 PSDS 2

0 CRNN - Mixup (α = 0.2) 34.04% 53.30%

1

CNN-Transformer ICT, SCT, CCT, Multiscale

Mixup (α = 0.2) 34.75% 61.10%
2 Shift 31.39% 55.05%
3 Masks 33.24% 59.04%
4 Mixup (α = 0.2)+Shift 33.43% 58.68%
5 Mixup (α = 0.2)+Masks 34.29% 61.52%
6 Shift+Masks 33.64% 55.46%

7

CRNN ICT, SCT, CCT, Multiscale

Mixup (α = 0.1) 37.69% 63.00%
8 Mixup (α = 0.2) 37.51% 62.63%
9 Mixup (α = 0.4) 36.71% 64.82%

10 Mixup (α = 0.5) 36.84% 64.18%
11 Mixup (α = 0.6) 36.55% 61.85%
12 Mixup (α = 0.7) 36.70% 63.91%
13 Shift 35.71% 61.29%
14 Masks 36.96% 64.84%
15 Mixup (α = 0.2)+Shift 37.03% 63.02%
16 Mixup (α = 0.2)+Masks 38.13% 65.32%

17

CRNN ICT, SCT, CCT, Multiscale,
ECA-Net, Exp.Softmax

Mixup (α = 0.1) 6.81% 75.59%
18 Mixup (α = 0.2) 5.71% 76.16%
19 Mixup (α = 0.7) 5.37% 76.29%
20 Shift 4.46% 72.16%
21 Masks 5.29% 75.07%
22 Mixup (α = 0.2)+Shift 5.12% 76.19%
23 Mixup (α = 0.2)+Masks 4.82% 75.45%
24 Shift+Masks 4.83% 76.08%

7∼16 - - - 40.72% 70.25%

17∼24 - - - 6.08% 80.80%

1∼16 - - - 38.79% 67.18%

1∼24 - - - 37.02% 72.42%

5. CONCLUSION

In this technical report, the proposed system is based on the neural
network of CRNN and CNN-Transformer, which is trained with the
mean-teacher framework of semi-supervised learning using multi-
ple consistency criteria. Among them, interpolation consistency
training (ICT) helps the model discriminate the ambiguous sam-
ples to enhance the generalization ability, shift consistency training
(SCT) assists the model to learn better temporal information, clip-
level consistency training (CCT) promotes the model feature repre-
sentation power. In additional, a multiscale CNN block is applied
to extract richer features to alleviate the influenct of the diversity of
event length for the model. An efficient channel attention network
(ECA-Net) and exponential softmax pooling assist model to ob-
tain more definite sound event predictions. We employ the mixup,
shift, and masks of data augmentation to further improve the model
performance. Finally, our ensemble sound event detection system
achieves the PSDS-scenario 1 of 40.72% and PSDS-scenario 2 of
80.80% on the validation set, considerably outperforming that of
the baseline score of 34.2% and 52.7%, respectively.
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