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ABSTRACT

Anomalous sound detection systems based on sub-cluster AdaCos
yield state-of-the-art performance on the DCASE 2020 dataset for
anomalous sound detection. In contrast to the previous year, the
dataset belonging to task 2 “Unsupervised Anomalous Sound De-
tection for Machine Condition Monitoring under Domain Shifted
Conditions” of the DCASE challenge 2021 contains not only source
domains with 1000 normal training samples for each machine but
also so-called target domains with different acoustic conditions for
which only 3 normal training samples are available. To address
this additional problem, a novel anomalous sound detection sys-
tem based on sub-cluster AdaCos for the DCASE challenge 2021 is
presented. This system is trained to extract embeddings whose dis-
tributions are estimated in different ways for source and target do-
mains, and utilize their negative log-likelihoods as anomaly scores.
In experimental evaluations, it is shown that the presented system
significantly outperforms both baseline systems on source and tar-
get domains of the development set.

Index Terms— anomalous sound detection, machine listening,
representation learning, angular margin loss, domain shift

1. INTRODUCTION

The goal of semi-supervised anomalous sound detection is to decide
whether a given audio sample resembles the training data i.e. is nor-
mal or substantially differs from the training data and thus is anoma-
lous. Basically, one can distinguish two major strategies for anoma-
lous sound detection: The first approach is based on training autoen-
coders to encode normal data into a lower-dimensional space and
then reconstruct it again [1, 2]. The underlying assumption is that
normal data can be reconstructed well after training while anoma-
lous data cannot leading to a higher reconstruction error. Thus, the
reconstruction error can be used as an anomaly score. The second
approach is to train neural networks to discriminate among classes
as for example machine types and utilize the trained neural network
to extract representation of the data, so-called embeddings, as fea-
tures [3, 4, 5, 6, 7]. Here, the assumption is that the information
needed to discriminate among the classes and thus is contained in
the embeddings is also sufficient to distinguish normal from anoma-
lous data. Angular margin losses such as ArcFace [8] or AdaCos
[9], which ensure a margin between the classes, have been shown to
outperform standard softmax losses in this context. To our knowl-
edge, the best performing system on the anomalous sound detection
dataset belonging to task 2 of the DCASE challenge 2020 [10] uses

an extension of AdaCos, called sub-cluster AdaCos [11]. This loss
learns more than a single mean value for each class to estimate less
restrictive distributions of the embeddings than standard AdaCos
and utilizes Gaussian mixture models (GMMs) to estimate these
distributions for the normal data instead of comparing embeddings
to the learned mean values by using the cosine similarity. This su-
perior performance is the reason why this work focuses entirely on
a system based on the sub-cluster AdaCos loss.

The system presented in this paper is designed for and submit-
ted to task 2 “Unsupervised Anomalous Sound Detection for Ma-
chine Condition Monitoring under Domain Shifted Conditions” of
the DCASE challenge 2021 [12]. The dataset of this task consists of
audio recordings with a length of 10 seconds and a sampling rate of
16 kHz belonging to the machine types “ToyCar” and “ToyTrain”
from ToyADMOS2 [13] and the machines types “fan”, “gearbox”,
“pump”, “slide rail” and “valve” from MIMII DUE [14]. The orga-
nizers of the challenge also provided two baseline systems: An au-
toencoder, which is the same as the baseline system of the previous
edition of the task, and a discriminatively trained MobileNetV2-
based baseline that predicts the section a given audio sample be-
longs to. Both baseline systems have a similar overall performance
when detecting anomalous data.

In contrast to the DCASE challenge 2020, there are several dif-
ferences for this year’s task: First and foremost, the dataset is split
into source domains for which about 1000 normal training samples
are provided for each of the 6 sections per machine type and so-
called target domains for the same sections with different acoustic
conditions than the source domains for which only 3 normal train-
ing samples are available. For both domains, the same number of
test samples is provided, about 100 normal samples and 100 anoma-
lous samples. Furthermore, the dataset is split into a development
set consisting of half of the sections and an evaluation set consist-
ing of the other half of the sections. Another difference between the
datasets is, that the sections to not directly correspond to specific
products of a machine type but the same products can appear in
different sections or different products can appear in the same sec-
tions. Both of these changes make the task much more challenging
than before. Last but not least, the DCASE 2020 dataset consists of
slightly different machine types, namely “ToyCar” and “ToyCon-
veyor” from the ToyADMOS dataset [15] and the machine types
“fan”, “pump”, “slide rail” and “valve” from the MIMII dataset
[16].

The goal of this work is to investigate how to utilize the sub-
cluster AdaCos loss for the DCASE 2021 anomalous sound detec-
tion dataset with its novel challenges. To this end, a system based
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Table 1: Modified ResNet architecture used for all experiments.
layer name structure output size

input - 313× 128
2D convolution 7× 7, stride= 2 157× 64× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 78× 31× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 39× 16× 32

residual block
(
3× 3
3× 3

)
× 2, stride= 1 20× 8× 64

residual block
(
3× 3
3× 3

)
× 2, stride= 1 10× 4× 128

max pooling 10× 1, stride= 1 4× 128
flatten - 512
dense (representation) linear 128

sub-cluster AdaCos - 42
sub-cluster AdaCos - 199

on the sub-cluster AdaCos loss is presented. As a second contribu-
tion, different ways to compute anomaly scores for the source and
target domains are proposed. Furthermore, it is shown how to de-
cide whether samples are normal or anomalous only based on these
scores from normal data. In experimental evaluations, it is shown
that the proposed system significantly outperforms both baseline
systems on the source and target domains of the development set.

2. PROPOSED METHOD

2.1. Data preprocessing

To compute input features for the neural network, log-Mel spectro-
grams with 128 Mel-bins, a window size of 1024 and a hop size of
512 are extracted from all raw waveforms with a sampling rate of
16 kHz resulting in features of size 313 × 128. These features are
then standardized by subtracting the temporal mean and dividing by
the temporal standard deviation estimated from all training files.

2.2. Neural network architecture

The network architecture used throughout this work is the same as
used in [11] and can be found in Tab. 1. It consists of several resid-
ual blocks [17] whose output is further processed by max-pooling
over time, flattening and a linear dense layer to obtain the embed-
dings of size 128. In each residual block, batch normalization [18]
is applied and LeakyReLu [19] with α = 0.1 is used as the non-
linear transfer function.

To train the neural network, two sub-cluster AdaCos losses [11]
with equal weight are minimized using Adam [20]. One is for clas-
sifying jointly among the sections and machine types and the other
one for classifying among the different attribute information given
in the filenames. When training, all normal data contained in the
training set and the additional training set has been used resulting in
a total of 42 sections and 199 different attribute information. Fur-
thermore, mixup [21] is used during training to avoid overfitting
of the model to the training data. The network is implemented in
Tensorflow [22] and trained for 400 epochs with a batch size of 64.

2.3. Calculating anomaly scores

Throughout this work, all anomaly scores are computed by training
Gaussian mixture models (GMMs) on the embeddings and utiliz-
ing negative weighted log-likelihoods as scores. In [11], it has been
shown that using GMMs to estimate the underlying distribution of
the embeddings outperforms other backends such as using cosine
similarity to the class means. Unless stated otherwise, all GMMs
are realized using scikit-learn [23], initialized with the learned mean
values of the sub-cluster AdaCos loss and have a regularized co-
variance matrix by adding 10−3 to the diagonal. To calculate the
anomaly scores, two different strategies for the source and target
domain are used.

For the source domain, one GMM is trained for each normal
data of the source domain belonging to a section and another GMM
is trained for each normal data of the source domain belonging to
different attribute information. Let x ∈ R128 denote an embedding,
s(x) ∈ S denote its section and a(s(x)) ⊂ A denote all attribute
information that are present in this section. Then, the anomaly score
Zsource(x) for x is the given by

Zsource(x) :=−max
k

logP (x|s(x), k)

−max
k

max
a∈a(s(x))

logP (x|a, k)
(1)

where P (.|s, k), P (.|a, k) denote the weighted likelihoods of com-
ponent k of the GMMs trained for section s ∈ S and target infor-
mation a ∈ A, respectively.

For the target domain, the same GMMs trained on the normal
data of the target domain belonging to single sections are used. Fur-
thermore, another GMM with three components is trained on the
three target samples and thus the cosine distance to the closest nor-
mal target sample is also utilized. Using the same notation from
before, the anomaly score Ztarget(x) for embedding x is given by

Ztarget(x) :=−max
k

logP (x|s(x), k)

− max
k=1,2,3

logP (x|Xtarget(s(x)), k)
(2)

where Xtarget(s(x)) ⊂ R128 denotes the normal training samples of
the target domain belonging to the section of x.

In [11], it has been shown that a simple representation derived
from the input features leads to surprisingly good performance for
the machine type “valve” on the DCASE 2020 dataset. This is the
reason why an additional term based on the temporal maximum
of the log-Mel spectrogram, denoted by tmax(x) ∈ R128 for em-
bedding x, is introduced when calculating the anomaly score for
the source domain of the machine type “valve”. To this end, a
GMM with a single Gaussian component is trained and the altered
anomaly score Z̃source(x) for embedding x belonging to machine
type “valve” is given by

Z̃source(x) := Zsource(x)− max
a∈a(s(x))

logPtmax(tmax(x)|a) (3)

where Ptmax(.|a) denotes the weighted likelihoods of the single
Gaussian trained on the temporal maxima of the log-Mel spectro-
grams belonging to target information a ∈ A.

2.4. Ensembling strategy

As done in [11], the proposed neural network for extracting the em-
beddings is trained with a different number of sub-clusters ranging
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from 20 to 24. The same value is used for both sub-cluster AdaCos
losses. Thus, there are 5 differently trained versions of each net-
work to extract embeddings. Furthermore, after each 100 epochs
of training, the embeddings are extracted and GMMs are trained to
calculate the anomaly detection scores. Then, all of these scores
are summed-up resulting in 4 subsystems for each network with a
specified number of sub-clusters and hence an ensemble consisting
of a total of 4× 5 = 20 models.

In addition to that, the described ensembling procedure is re-
peated by using only a single sub-cluster AdaCos loss classifying
among the sections and machine types only and thus removing the
second sub-cluster AdaCos loss. This led to slightly better perfor-
mance for some machine types and to slightly worse performance
for other machine types. To obtain anomaly scores for each ma-
chine type, the single system is used that led to better performance
for the given machine type. More concretely, for the machine types
“ToyCar”, “ToyTrain”, “pump” and “slide rail” the anomaly scores
obtained by using the model trained on both losses are used and for
“fan”, “gearbox” and “valve” the anomaly scores obtained with the
models trained on only a single loss are used.

2.5. Setting decision thresholds

Next, it is described how decision thresholds for deciding whether
a given test sample is normal or anomalous solely based on the
anomaly score are obtained. To this end, the 90th percentile of
the anomaly scores of all normal training samples belonging to a
given section and a given domain is calculated. Then, all anomaly
scores of test samples belonging to the same section and domain that
are above this threshold are marked as anomalous. For the source
domain, Zsource(x) as defined in Eq. (1) is used but for the target
domain, only the first term of Ztarget(x) is used. The reason is that
the likelihoods from the second term belonging to the training data
are inappropriately high since the three means of the corresponding
GMM are initialized as the three training samples. Hence, when
also using the second term of Eq. (2) the decision threshold would
also be estimated too high and thus all test data samples belonging
to the target domain would be considered anomalous.

3. RESULTS

The results obtained with the proposed system compared to the
two baseline systems can be found in Tab. 2. It can be seen that
the proposed system significantly outperforms both baseline sys-
tems, which both have roughly the same overall performance, on
the source and target domains. However, the improvement in terms
of AUC is much greater than for pAUC. For nearly all dataset splits
the proposed system has a higher AUC than both baseline systems.
But for some dataset splits the MobileNetV2-based baseline system
has a higher pAUC than the proposed system. For the the machine
type “gearbox” the harmonic mean of all pAUCs belonging to the
proposed system is even slightly worse than the harmonic mean of
the MobileNetV2-based baseline system.

4. SUBMISSIONS

In total, the results obtained with four systems have been submitted
to the challenge. More concretely, the results obtained with the
proposed system as previously described and three slight variations
of it have been submitted. The first variation only consists of the
subsystem of the ensemble trained with both sub-cluster AdaCos

losses. The second variation is using the mean of the scores of both
subsystems instead of using the best-performing subsystem for each
of the machine types. And the third variation is the proposed system
without also using the simple temporal max-representation for the
machine type “valve”, i.e. not using the altered anomaly score given
in Eq. (3) but the one given in Eq. (1).

5. CONCLUSIONS

In this work, an anomalous sound detection system based on the
sub-cluster AdaCos loss function for domain shifted conditions has
been presented. The proposed system consists of multiple dis-
criminatively trained neural networks for extracting embeddings
from log-Mel spectrograms and utilizes multiple GMMs for esti-
mating distributions of the normal embeddings. These estimated
distributions are then used to calculate log-likelihoods for test data
and combine them into actual anomaly scores. To decide whether
a given test sample is anomalous or normal, individual decision
thresholds for each section are computed by taking the 90th per-
centile from the log-likelihoods of the corresponding normal train-
ing samples. In experimental evaluations conducted on the dataset
of task 2 of the DCASE challenge 2021, it has been shown that the
proposed system significantly outperforms both baseline systems of
the challenge in terms of AUC and pAUC on source and target do-
mains of the development set.
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Table 2: AUCs and pAUCs per machine type obtained with the baseline system and the proposed system. Highest AUCs and pAUCs in each
row are underlined.

dataset split baselines proposed systemautoencoder MobileNetV2
machine type section domain AUC pAUC AUC pAUC AUC pAUC

ToyCar 0 source 67.63% 51.87% 66.56% 66.47% 79.15% 61.63%
ToyCar 1 source 61.97% 51.82% 71.58% 66.44% 91.44% 71.26%
ToyCar 2 source 74.36% 55.56% 40.37% 47.48% 96.89% 85.05%
ToyCar 0 target 54.50% 50.52% 61.32% 52.61% 92.14% 80.89%
ToyCar 1 target 64.12% 51.14% 72.48% 63.99% 77.10% 63.26%
ToyCar 2 target 56.57% 52.61% 45.17% 48.85% 62.63% 57.95%
ToyCar harmonic mean 62.49% 52.36% 56.04% 56.37% 81.43% 68.62%

ToyTrain 0 source 72.67% 69.38% 69.84% 54.43% 96.51% 91.11%
ToyTrain 1 source 72.65% 62.52% 64.79% 54.09% 89.02% 77.79%
ToyTrain 2 source 69.91% 47.48% 69.28% 47.66% 87.91% 47.37%
ToyTrain 0 target 56.07% 50.62% 46.28% 51.27% 72.29% 48.37%
ToyTrain 1 target 51.13% 48.60% 53.38% 49.60% 50.86% 49.89%
ToyTrain 2 target 55.57% 50.79% 51.42% 53.40% 94.67% 79.84%
ToyTrain harmonic mean 61.71% 53.81% 57.46% 51.61% 77.89% 61.11%

fan 0 source 66.69% 57.08% 43.62% 50.45% 73.41% 62.26%
fan 1 source 67.43% 50.72% 78.33% 78.37% 89.02% 84.53%
fan 2 source 64.21% 53.12% 74.21% 76.80% 84.01% 76.32%
fan 0 target 69.70% 55.13% 53.34% 56.01% 55.37% 48.47%
fan 1 target 49.99% 48.49% 78.12% 66.41% 87.94% 75.53%
fan 2 target 66.19% 56.93% 60.35% 60.97% 71.31% 70.68%
fan harmonic mean 63.24% 53.38% 61.56% 63.02% 74.80% 67.41%

gearbox 0 source 56.03% 51.59% 81.35% 70.46% 85.25% 73.93%
gearbox 1 source 72.77% 52.30% 60.74% 53.88% 85.91% 54.05%
gearbox 2 source 58.96% 51.82% 71.58% 62.23% 59.31% 48.41%
gearbox 0 target 74.29% 55.67% 75.02% 64.77% 87.62% 71.61%
gearbox 1 target 72.12% 51.78% 56.27% 53.30% 86.87% 56.85%
gearbox 2 target 66.41% 53.66% 64.45% 55.58% 65.41% 52.96%
gearbox harmonic mean 65.97% 52.76% 66.70% 59.16% 76.49% 58.19%

pump 0 source 67.48% 61.83% 64.09% 62.40% 77.15% 63.53%
pump 1 source 82.38% 58.29% 86.27% 66.66% 98.14% 90.47%
pump 2 source 63.93% 55.44% 53.70% 50.98% 79.15% 65.68%
pump 0 target 58.01% 51.53% 59.09% 53.96% 58.54% 51.21%
pump 1 target 47.35% 49.65% 71.86% 62.69% 87.89% 61.37%
pump 2 target 62.78% 51.67% 50.16% 51.69% 73.57% 57.74%
pump harmonic mean 61.92% 54.41% 61.89% 57.37% 77.08% 63.05%

slide rail 0 source 74.09% 52.45% 61.51% 53.97% 95.56% 82.11%
slide rail 1 source 82.16% 60.29% 79.97% 55.62% 94.28% 71.58%
slide rail 2 source 78.34% 65.16% 79.86% 71.88% 84.05% 76.59%
slide rail 0 target 67.22% 57.32% 51.96% 51.96% 81.57% 59.47%
slide rail 1 target 66.94% 53.08% 46.83% 52.02% 65.97% 49.84%
slide rail 2 target 46.20% 50.10% 55.61% 55.71% 73.40% 58.00%
slide rail harmonic mean 66.74% 55.94% 59.26% 56.00% 81.07% 64.29%

valve 0 source 50.34% 50.82% 58.34% 54.97% 79.54% 62.54%
valve 1 source 53.52% 49.33% 53.57% 50.09% 91.02% 67.53%
valve 2 source 59.91% 51.96% 56.13% 51.69% 98.09% 92.00%
valve 0 target 47.12% 48.68% 52.19% 51.54% 68.91% 63.79%
valve 1 target 56.39% 53.88% 68.59% 57.83% 80.02% 63.26%
valve 2 target 55.16% 48.97% 53.58% 50.86% 78.30% 57.05%
valve harmonic mean 53.41% 50.54% 56.51% 52.64% 81.60% 66.16%

all harmonic mean 61.93% 53.27% 59.72% 56.37% 78.54% 63.93%


