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ABSTRACT

This technical report describes the submission from the Group of
Intelligent Signal Processing (GISP) for Task6 of DCASE2021
challenge (automated audio captioning). Our audio captioning
system is based on the sequence-to-sequence autoencoder model.
Previous recurrent neural network (RNN) and Transformer based
methods just perceive the time dimension information but ignore
the frequency information. To utilize both time dimension and
frequency dimension information, multi-layer perceptrons mixer
(MLP-Mixer) is used as the encoder. For caption prediction, a
Transformer decoder structure is used as the decoder. No extra
data is employed. In addition, to highlight the content information,
we use a pre-trained encoder with multi-label content information.
The experimental results show that our system can achieve the SPI-
DEr of 0.144 (official baseline: 0.051) on the evaluation split of the
Clotho dataset. In addition, comparing with Transformer methods,
our system has fewer training time.

Index Terms— Automated audio captioning, sequence-to-
sequence model, MLP-Mixer, attention

1. INTRODUCTION

The automated audio captioning (AAC) is an intermodal translation
task which translates an input audio into a corresponding descrip-
tion (i.e., caption) by using natural language methods [1–3]. This
task expects that the caption is as close as possible to an unartificial
one. AAC is different from the sound event detection (SED) and the
acoustic scene classification (ASC) tasks. AAC does not predict a
sound event/scene, but describes the general information including
the identification of sound events, acoustic scenes, foreground ver-
sus background discrimination, concepts and physical properties of
objects and environments [3]. AAC has positive effects in various
applications, such as intelligent and content oriented machine-to-
machine interaction and automatic content description [4].

Apparently, AAC seems like automated image captioning
which describes information from an input image [5, 6]. However,
there are some significant differences [7]. First, the audio can get
the information that is unable to provide in an image, because the
sound includes multi-directional information. Second, the spectro-
gram of the audio includes both time and frequency features, which
is different from the space feature in images [8]. Third, audio signal
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is time series signal with natural temporal information, but the im-
age does not [1]. The research of automated audio captioning will
get information which cannot be perceived by the optical image.

This report describes the details of the GISP team’s submission
for Task6 of DCASE2021. Our system is a sequence-to-sequence
autoencoder model, which contains an encoder based on Multi-
layer perceptrons mixer [9] and a self-attention decoder based on
Transformer [10]. A pre-trained encoder with multi-label content
words is also employed. The experimental results shows the ef-
fectiveness of our AAC system. On the official evaluation split of
Clotho, our system can achieve the SPIDEr of 0.144.

The organization of this report is organized as follows: Section
2 describes the structure of our AAC system. Section 3 presents the
details of experiments and results. Section 4 concludes our work.

2. SYSTEM STRUCTURE

In this section, we give the architecture of our AAC system, as
shown in Figure 1. Specifically, it is based on a sequence-to-
sequence autoencoder model, including an audio embedding mod-
ule, an MLP-Mixer encoder module and a self-attention Trans-
former decoder module. The details are given as follows.

2.1. Audio Embedding

The input audio feature of our system is the log-mel spectrogram.
Note that, input log-mel spectrograms have diverse time frames and
have the same frequency feature dimension (i.e., 64). We use a 1D-
convolutional neural network (CNN) to upsample the frequency di-
mension from 64 to 128, getting the audio embedding from the log-
mel feature for the MLP-Mixer encoder. The details of the audio
embedding is provided in Table 1.

Table 1: Audio embedding process.

Input: log-mel spectrogram (B × T × F )

Rearrange (B × T × F ) to (B × F × T )

1D-CNN 1 × 10 @ 128, (stride 1× 5)

Rearrange (B ×H × T ′) to (B × T ′ ×H)

Output: audio embedding feature (B × T ′ ×H)
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Figure 1: The proposed automated audio captioning system.

We set the size of a batch input spectrograms as B × T × F .
B represents the batch size, T represents the time dimension, and
F represents the frequency dimension. Then the input feature will
be transposed to the size of B × F × T , and passed to a 1D-CNN
module. This 1D-CNN module can get F channels features and
output the audio embedding features with H filters. Here, H repre-
sents the embedding size (i.e., 128). Note that, we set the 1D-CNN
with the kernel size of 1 × 10 and stride of 1 × 5, to squeeze the
dimension of time sequence and extract the efficient feature. Fi-
nally, after a transposing process, the size of the audio embedding
feature is B×T ′×H . Here, T ′ represents the time dimension after
1D-CNN.

2.2. MLP-mixer Encoder

In the baseline system of the Task6, 3-layer bi-directional gated re-
current units (bi-GRUs) are applied as the encoder, and the input
data feature of the baseline is the log-mel spectrogram. The bi-
GRUs encoder can model the time series information of the log-mel
spectrogram, however, it cannot perceive the frequency information
in the input feature. In order to model the time domain and the
frequency domain simultaneously, we employ multi-layer percep-
trons mixer (MLP-Mixer) structure as the encoder of our system,
due to its ability to perceive information in both time domain and
frequency domain.

As shown in Figure 1, the MLP-Mixer encoder has three MLP-

Mixer encoder layers. Each encoder layer can be seen as an MLP-
Mixer block, which employs transposing and MLP feedforward
module. Transposing process exchanges the dimensions of the time
domain and the frequency domain. Because of the transposing
process, MLP-Mixer blocks can perceive the time domain and the
frequency domain simultaneously with MLP feedforward modules.
The layer norm in our model is used to normalize the feature, and
the skip connection is used to avoid the gradient vanishing. Mean-
while, we also use the skip connections of the input and each en-
coder layer output, to obtain the features of different level via sum-
mation operation. Here, the MLP feedforward module consists of
two linear layers and activated by a GELU function layer, as shown
in Figure 2.

Figure 2: The structure of the MLP feedforward module.

2.3. Transformer Decoder

The decoder of our system is the same as that of the Transformer
model in [10]. The decoder in our system consists of three trans-
former decoder layers.

The input data of our decoder is the word embedding feature.
For a decoder layer, the input is passed to the masked multi-head
attention module and output a query vector feature. Then the value
vector becomes one of the inputs for the next multi-head attention
module. The multi-head attention module also uses the output of
the MLP-Mixer encoder as the key vector input and the value vector
input. After layer norm and feedforward module, we can obtain the
output of a decoder layer. In each decoder layer, skip connection
strategy is also used to avoid gradient vanishing problem.

Finally, the output of the decoder is passed to a linear layer
and a softmax function to get the output probabilities of the caption
words. Note that, during the training stage, our system uses teacher
forcing strategy to train the decoder, which uses the original cap-
tions to word embedding as the input data of the decoder module.

During the evaluation stage, we choose beam search strategy
[11] to predict the caption of the audio signal. Beam search strategy
can preserve the top k possible words for each word prediction pro-
cess with previous prediction results, and output the most possible
caption finally. In our system, k is empirically set as 5.

2.4. Pre-trained encoder

The MLP-Mixer encoder is used to model the content of audio
which will be passed to the Transformer decoder to predict caption
words. However, there are more function words (e.g., a, an, the,
and etc) in captions without any essential meaning than the content
words (i.e., adjectives, nouns), which may let the system identify
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Table 2: Performance comparison on Clotho dataset.

Metric Baseline [3] Transformer MLP/w/AE MLP/w/Pre Proposed system

BELU1 0.378 0.450 0.460 0.471 0.461

BELU2 0.119 0.262 0.266 0.282 0.275

BELU3 0.050 0.167 0.170 0.182 0.180

BELU4 0.017 0.105 0.104 0.112 0.112

ROUGEL 0.263 0.306 0.307 0.317 0.312

METEOR 0.078 0.124 0.124 0.128 0.126

CIDEr 0.075 0.206 0.198 0.208 0.210

SPICE 0.028 0.071 0.073 0.078 0.079

SPIDEr 0.051 0.138 0.136 0.143 0.144

the content of audio obscurely. To mitigate this problem, we adopt
a pre-trained encoder strategy. The process of this strategy is shown
in Figure 3. According to [12], first, we abandon 20 words with
highest frequency and the words whose length are less than 3 let-
ters. Then, we convert the words with ’-ing’, ’-ly’, ’-d’, ’-s’, etc., to
their original words and add their frequency. Finally, we choose 300
words with the highest frequency as the multi-label for pre-trained
encoder. Note that, all 5 captions of each audio has the same multi-
label, such that an audio just needs to be trained once in an epoch.
During the captioning prediction training, the pre-trained encoder
module will be loaded as the MLP-Mixer encoder as shown in Fig-
ure 1, and optimized by the loss function of captioning task.

Figure 3: The process of the pre-trained encoder.

3. EXPERIMENTS AND RESULTS

3.1. Data Pre-processing

Our system works on the Clotho (v2) dataset from Task6 of
DCASE2021. Clotho dataset consists of audio samples of 15 to 30
seconds duration, with each audio sample having five captions of 8
to 20 words length. There is a total number of 6,974 audio samples
in Clotho, with 34,870 captions. The dataset is divided into four
splits: development, validation, evaluation, and testing. Our system
is trained by development set and validation set, and evaluated on
evaluation set. Finally, we submit the evaluation results on test set.

Experiments use log-mel spectrograms as audio input feature,
which comes from the raw audio signals with a sample rate of 44.1
kHz. We get 64 log-mel band spectral, using Hamming window
with 50% overlap. For the unity of encoder dimensions, we pad the
audio spectral to the max time sequence length T (i.e., T = 2, 584)
with 0.

We tokenize the captions of the development set. There are no
unknown tokens/words since all the words in the development set
appear in the validation set, evaluation set and test set. < sos >,
<eos> and <pad> are employed to denote the start-of-sequence,
the end-of-sequence and sequence padding, respectively. In a batch
word vectors input, we pad the word vectors to the max length of
this batch with <pad>, and the max length of the whole dataset is
22.

3.2. Experimental Setup

The time sequence dimension and the frequency dimension of the
MLP-Mixer encoder are 515 and 128, respectively. The hidden di-
mension of time sequence processing is 128 and the hidden dimen-
sion of frequency processing is 64. The model dimension of Trans-
former decoder is 128. Positional encoding is used for both encoder
and decoder in our system. We use the padding mask of decoder to
mask the < pad> in word vectors. Cross entropy function is used
as the loss function, which ignores the index of <pad>.

Our model is trained by Adam optimizer. The initial learning
rate is set as 0.0001, and cosine warm-up strategy is adopted to ad-
just the learning rate. The batch size is set as 128 and the max train-
ing epoch is set as 300. Early stopping strategy is used according
to the loss value on the validation set. When the loss value does not
decent for continuous 20 epochs, the model training process will be
stopped. The pre-trained encoder is optimized by Adam, too. The
loss function of multi-label classification is BCEloss function, and
early stopping strategy with patience as 10.

3.3. Performance Comparison

In our experiments, except from the baseline system of
DCASE2021 Task6 [3], a Transformer based system, a variation
of our proposed system (i.e., our system without time dimension
squeeze in audio embedding and pre-trained encoder, denoted as
MLP/w/AE) and another variation (i.e., our system without pre-
trained encoder, denoted as MLP/w/Pre) are also provided for per-
formance comparison. Note that, the Transformer based system is
built upon the Transformer model [10] without audio embedding
process and pre-trained encoder.

The experimental results are given in Table 2. As can be
seen from Table 2, the Transformer based system, MLP/w/AE,
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MLP/w/Pre and our proposed system all outperform the base-
line system in terms of all performance metrics. Compared with
the Transformer based system, the MLP/w/AE has slightly higher
BELU, ROUGEL and SPICE metric scores and slightly lower
CIDEr and SPIDEr scores. Overall, they achieve similar perfor-
mance. This shows that the self-attention strategy is not necessary
for the encoder of an audio captioning system, and the use multi-
layer perceptrons can achieve comparable or even better perfor-
mance to the self-attention module. Compared with MLP/w/Pre,
though the system with pre-trained encoder has slightly lower
BELU, ROUGEL and METEOR scores, it can achieve higher
CIDEr, SPICE and SPIDEr scores, the reason is that the pre-trained
encoder can provide more content information of audio signal while
reducing the probability of the function words. With audio embed-
ding process and pre-trained encoder, our system can achieve the
best performance in terms of CIDEr, SPICE and SPIDEr.

Table 3: Number of parameters of different systems (M: million)

Baseline Transformer MLP/w/AE Proposed system

4.57M 2.52M 3.97M 2.45M

We also give the number of parameters of different systems in
Table 3. Note that, the MLP/w/Pre has the same number of pa-
rameters, so we do not show its. We can see that our proposed
system has the least amount of parameters as compared with other
systems. According to Table 2 and Table 3, our system can achieve
the best performance with less parameters, which shows the posi-
tive influence of the audio embedding process and the effectiveness
of MLP-Mixer for ACC task.

4. CONCLUSION

In this technical report, we give our AAC system for Task6 of
the DCASE2021 challenge in detail. Our system is a sequence-
to-sequence autoencoder model, which includes an encoder based
on MLP-Mixer and a self-attention decoder based on Transformer.
The experimental results show our system can achieve best perfor-
mance with the least amount of parameters as compared with other
systems. In future work, we will try use other encoders or decoders
structures with other pre-trained model for the automated audio cap-
tioning task.
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