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ABSTRACT

This report describes the Hitachi system for the DCASE 2021 Chal-
lenge - Task 3. Our proposal relies on a single-stage system that
employs the transformer encoder (i.e., self-attention layers) as a
core idea. We evaluate the effect of applying different transformer
configurations to handle the directive interferences on the presence
of multiple sound events. Additionally, the transformer employs
residual connections to extract the features from the input streams.
We trained the model using specaugment as data augmentation and
performed threshold postprocessing for each sound event. Em-
ploying the first-order Ambisonic (FOA) signals, the transformer
was trained using the activity-coupled Cartesian DOA vector (AC-
CDOA) representations. This unified training framework showed
better performance than training the model for each sub-task inde-
pendently.

Index Terms— residual connections, transformer, data aug-
mentation, self attention

1. INTRODUCTION

Directional characteristics of sound signals and their detection have
an essential role in the sound processing signal. The correct recog-
nition of these features enables the following subprocesses such
as sound source separation or speech recognition. This task of
jointly detect a given sound event and estimate its direction-of-
arrival (DOA) is known as sound event localization and detection
(SELD) [1]. It is applied to several areas: robotics [2], meeting
transcriptions [3], autonomous driving [4], etc.

The last years have witnessed considerable growth in SELD
studies thanks to the DCASE Challenges [5, 6]. The reported stud-
ies proposed systems that aim to handle the SELD task jointly (i.e.,
single-stage) [7] or separately in two sub-tasks: sound event de-
tection (SED) and sound event localization (SEL), i.e., two-stages
[8]. The proposed systems aimed to process the location of sound
events under several environmental issues, such as noises, room re-
verberations, moving and overlapping sound events, conditional is-
sues present on on Task 3 of the DCASE 2019 [9] and DCASE 2020
[6] challenges. The Task3 of the DCASE 2021 challenge [10] in-
cluded a new challenging feature: events outside the target classes
with directional interferences.

Using the first-order Ambisonic (FOA) signals provided with
the data set, this report proposes using self-attention layers imple-
mented into a single-stage system to handle this new conditional
issue. The model employs an activity-couple Cartesian DOA vector

(ACCDOA) representation to estimate the event class and its coor-
dinate [7].

Figure 1: System overview.

2. SYSTEM

In this section, we describe the components of the pipeline for our
SELD model 1.

2.1. Data Augmentation

Data augmentation techniques improve the performance of the
trained model enabling a better generalization of the given problem.
SpecAugment is an augmentation scheme applied to sound process-
ing tasks, such as speech separation or speech recognition [11]. The
initial implementation acted directly on the spectrogram of the in-
put signals, requiring a negligible amount of additional computa-
tional resources. SpecAugment consists of the policies of frequency
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Figure 2: Transformer Encoder for SELD.

masking, time masking, and time warping. We employed the fre-
quency and time masking of a time-domain version of specaugment.
Also, speed perturbation was employed as one additional technique
for data augmentation [12]. These three techniques were applied
to one random channel of the input batch, each technique sepa-
rately. The corrupted waveform signals are stacked to the initial
input batch, obtaining a batch size four times from the initial size.

2.2. Feature Extraction

The TAU-NIGENS Spatial Sound Events 2021 [10] data set com-
prises two input data formats: a tetrahedral microphone array and a
first-order Ambisonic (FOA) signal. For our experiments, we em-
ployed the FOA signals.

The FOA input comprises signals from four channels which
indicates the Omni-directional component w, and the directional
components x, y, and z. From the channels, we extracted the logmel
features and the instantaneous sound intensity vector. The intensity
vectors carry the acoustical energy direction of a given sound wave.
We calculated the intensity vectors in the STFT domain using the
process described at [13]. The obtained intensity vectors are then
concatenated as additional channels to the logmel features. The
resulting input has seven channels: four logmel + three intensity
vectors.

2.3. Model Description

We employed the architecture named Transformer for our experi-
ments [14]. The Transformer aims at transforming an input feature
sequence into its corresponding output sequence. The Transformer,
initially proposed for handling natural language processing issues
[15], is widely used in sound applications, such as speech recogni-
tion [14, 16]. The Transformer comprises an encoder-decoder ar-
chitecture, using an input sequence a few times longer than the out-
put one [16]. The Transformer employs a self-attention mechanism
with multi-head attention and position-wise feed-forward networks.

For this report, we employed the transformer encoder instead of
the whole encode-decoder architecture to model the locations and
the classes of the sound events 2.

The multichannel input represented as a signal of F -dim log-
Mel filterbank features is subsample by using two CNN/Residual
layers with max-pooling layers. The CNN layers use a stride size
of 1, a kernel size of 3, and a padding size of 1. The residual layers
comprise two CNN layers with kernel size three and one CNN layer
as identity shortcut, as described in [17]. Then, a fully connected
layer without bias resizes the output from the CNN layers into D-
dim vectors. After adding the positional encoding information, the
signal is processed by the N -blocks of self-attention layers. Finally,
the output of the self-attention is mapped into a 3 × nclasses-dim
vector.

2.4. Post-processing

The audio tracks are split into subsegments with an overlap during
inference. Then, the results from the overlapped frames are aver-
aged. Finally, we conduct post-processing of minimum threshold-
ing for each sound event using a hyperparameter search [18]. The
threshold is selected when the average of the error accuracy and
the effectiveness measure (i.e., 1–Fscore). The search is performed
along with a uniform distribution between [Tmin, 1〉. We observed
that the value of Tmin affects the final result by improving the Lo-
calization recall and degrading the other measures.

During training, we used a global threshold for all sound events
set to 0.5.

3. EXPERIMENTS

This report summarizes a series of experiments conducted to im-
prove the localization and detection of sound events in the presence
of directional interferences.

3.1. Experimental settings

In this report, we summarize the effectiveness of the transformer
for SELD tasks on directional interferences. The experiments were
performed using the SpeechBrain toolkit [19] implemented on the
PyTorch framework.

The models were trained for 2000 epochs using an NVIDIA
RTX 3060Ti graphic processing unit. For the optimization, we em-
ployed the “AdamW” solver with an initial learning rate of 10−3

and a linear learning scheduler with a final learning rate of 10−7.
The input batch uses 16 files with six second-length, which after
the data-augmentation becomes 64. The mean squared root is em-
ployed as a cost function.

We employed the metrics described at [5].
For our experiments, we employed the following architectures:
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Table 1: Evaluation results using the FOA array on the development
set - valid fold

ER20◦ ↓ F20(%) ↑ LECD ↓ LRCD(%) ↑
Baseline - - - -
SELDnet 0.72 33.4 30.1 47.8

Residual-GRU 0.68 41.0 27.0 56.3
Transformer-1 0.70 37.0 26.2 48.5
Transformer-2 0.70 39.3 24.6 51.3
Transformer-3 0.71 40.9 25.9 55.9
Transformer-4 0.67 42.9 22.3 51.9

SELDnet: A convolutional recurrent neural network employed for
SELD tasks [20]. We employed the configuration described at [10],
using as input the data augmentation described at section 2.1 and
the feature extraction of section 2.2
Residual-GRU: Similar to SELDnet, replacing the CNN layers
with residual connections as decribed at [17].
Transformer-1: This models employes 2 residual blocks with 64
channels. After the residual block a max-pooling layers is stacked.
The first max-pooling has a stride of (5, 4) size and the second a
size of (1, 4). After the second max-pooling, a linear layer reduce to
128-dims. For this model, we employed a fixed positional encoding.
The model has three self-attention blocks with 4 attention heads and
1024 units for the position-wise FF.
Transformer-2: Similar to Transformer-1, without positional en-
coding.
Transformer-3: Similar to Transformer-1, with six self-attention
blocks and without positional encoding.
Transformer-4: Similar to Transformer-1, with a linear layer with
256-dims of outputs, 8 attention heads, 2048 position-wise FF units,
and without positional encoding.

3.2. Results

We evaluate our models on the development set of the TAU-
NIGENS Spatial Sound Events 2021. Table 1 and 2 show the re-
sults for the validation and testing fold of the development set, re-
spectively. The baseline results were obtained from [10]. Without
post-processing, the models show a slight improvement over the
baseline. In table 1, we also observe that the use of Residual con-
nections in a SELDnet model improves localization recall. How-
ever, the other metrics do not show a relevant improvement. Table 3
lists the results of Transformer-4 using the post-processing method
described in section 2.4. We observe that the Transformer reaches
a higher location recall when using a Tmin close to zero. However,
the performance of the models on the other metrics degrades.
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